Recently, the use of ubiquitous sensor network technology has spread vastly. The ubiquitous sensor networks are widely de- ployed in factory auttxnation as they provide effective measuring solution for instruments. Th...Recently, the use of ubiquitous sensor network technology has spread vastly. The ubiquitous sensor networks are widely de- ployed in factory auttxnation as they provide effective measuring solution for instruments. The wired/wireless network module, which provides the interface to connect to the u-sensor network, is needed but there is no perfect standardization about the interface. In this situation, the interface compatibility between measuring instrument can be maintained using the IEEEI451 international standard. In this paper, the Wireless Transducer Interface Mcduie (WTIM) based on IEEE1451.5 was designed. It coxnects to the measuring instnmnt, like the muiti-meter, power meter, and etc., to support the RS232 interface. As these devices cannot connect to network without a mod- ule, we use the WTIM to help these devices connect to network sys- ton. Its ftmction was verified through the ubiquitous network connection and data transfer between monitoring PC and measuring instrument. This technology is expected to reduce cost in order to construct the wireless industry automation system using existing devices.展开更多
Hybrid Power-line/Visible-light Communication(HPVC)network has been one of the most promising Cooperative Communication(CC)technologies for constructing Smart Home due to its superior communication reliability and har...Hybrid Power-line/Visible-light Communication(HPVC)network has been one of the most promising Cooperative Communication(CC)technologies for constructing Smart Home due to its superior communication reliability and hardware efficiency.Current research on HPVC networks focuses on the performance analysis and optimization of the Physical(PHY)layer,where the Power Line Communication(PLC)component only serves as the backbone to provide power to light Emitting Diode(LED)devices.So designing a Media Access Control(MAC)protocol remains a great challenge because it allows both PLC and Visible Light Communication(VLC)components to operate data transmission,i.e.,to achieve a true HPVC network CC.To solve this problem,we propose a new HPC network MAC protocol(HPVC MAC)based on Carrier Sense Multiple Access/Collision Avoidance(CSMA/CA)by combining IEEE 802.15.7 and IEEE 1901 standards.Firstly,we add an Additional Assistance(AA)layer to provide the channel selection strategies for sensor stations,so that they can complete data transmission on the selected channel via the specified CSMA/CA mechanism,respectively.Based on this,we give a detailed working principle of the HPVC MAC,followed by the construction of a joint analytical model for mathematicalmathematical validation of the HPVC MAC.In the modeling process,the impacts of PHY layer settings(including channel fading types and additive noise feature),CSMA/CA mechanisms of 802.15.7 and 1901,and practical configurations(such as traffic rate,transit buffer size)are comprehensively taken into consideration.Moreover,we prove the proposed analytical model has the solvability.Finally,through extensive simulations,we characterize the HPVC MAC performance under different system parameters and verify the correctness of the corresponding analytical model with an average error rate of 4.62%between the simulation and analytical results.展开更多
基金supported by the GRRC program of Gyeong-gi province:[GRRC Hanyang2009-B01,Building/Home USN Technology for Smart Grid]
文摘Recently, the use of ubiquitous sensor network technology has spread vastly. The ubiquitous sensor networks are widely de- ployed in factory auttxnation as they provide effective measuring solution for instruments. The wired/wireless network module, which provides the interface to connect to the u-sensor network, is needed but there is no perfect standardization about the interface. In this situation, the interface compatibility between measuring instrument can be maintained using the IEEEI451 international standard. In this paper, the Wireless Transducer Interface Mcduie (WTIM) based on IEEE1451.5 was designed. It coxnects to the measuring instnmnt, like the muiti-meter, power meter, and etc., to support the RS232 interface. As these devices cannot connect to network without a mod- ule, we use the WTIM to help these devices connect to network sys- ton. Its ftmction was verified through the ubiquitous network connection and data transfer between monitoring PC and measuring instrument. This technology is expected to reduce cost in order to construct the wireless industry automation system using existing devices.
基金supported by the National Natural Science Foundation of China(No.61772386)National Key Research and Development Project(No.2018YFB1305001)Fundamental Research Funds for the Central Universities(No.KJ02072021-0119).
文摘Hybrid Power-line/Visible-light Communication(HPVC)network has been one of the most promising Cooperative Communication(CC)technologies for constructing Smart Home due to its superior communication reliability and hardware efficiency.Current research on HPVC networks focuses on the performance analysis and optimization of the Physical(PHY)layer,where the Power Line Communication(PLC)component only serves as the backbone to provide power to light Emitting Diode(LED)devices.So designing a Media Access Control(MAC)protocol remains a great challenge because it allows both PLC and Visible Light Communication(VLC)components to operate data transmission,i.e.,to achieve a true HPVC network CC.To solve this problem,we propose a new HPC network MAC protocol(HPVC MAC)based on Carrier Sense Multiple Access/Collision Avoidance(CSMA/CA)by combining IEEE 802.15.7 and IEEE 1901 standards.Firstly,we add an Additional Assistance(AA)layer to provide the channel selection strategies for sensor stations,so that they can complete data transmission on the selected channel via the specified CSMA/CA mechanism,respectively.Based on this,we give a detailed working principle of the HPVC MAC,followed by the construction of a joint analytical model for mathematicalmathematical validation of the HPVC MAC.In the modeling process,the impacts of PHY layer settings(including channel fading types and additive noise feature),CSMA/CA mechanisms of 802.15.7 and 1901,and practical configurations(such as traffic rate,transit buffer size)are comprehensively taken into consideration.Moreover,we prove the proposed analytical model has the solvability.Finally,through extensive simulations,we characterize the HPVC MAC performance under different system parameters and verify the correctness of the corresponding analytical model with an average error rate of 4.62%between the simulation and analytical results.