This paper explores and compares FER (Frame Error Rate) of a MAC (Medium Access Control) layer in the IEEE 802.11 a/g/n wireless LAN. It is evaluated under the fading wireless channel, using theoretical analysis metho...This paper explores and compares FER (Frame Error Rate) of a MAC (Medium Access Control) layer in the IEEE 802.11 a/g/n wireless LAN. It is evaluated under the fading wireless channel, using theoretical analysis method. It is analyzed by using the number of stations with both variable payload size and mobile speed on the condition that fading margin and transmission probability are fixed. Especially, in the IEEE 802.11n, A-MSDU (MAC Service Data Unit Aggregation) scheme is considered and the number of subframe is used as the variable parameter. In the IEEE802.11a/g wireless LAN, fixed wireless channel is assumed to be Rayleigh fading channel. Mobile wireless channel is assumed to be flat fading Rayleigh channel with Jake spectrum. The channel is in fading states or inter-fading states by evaluating a certain threshold value of received signal power level. If and only if the whole frame is in inter-fading state, there is the successful frame transmission. If any part of frame is in fading duration, the frame is received in error.展开更多
文摘This paper explores and compares FER (Frame Error Rate) of a MAC (Medium Access Control) layer in the IEEE 802.11 a/g/n wireless LAN. It is evaluated under the fading wireless channel, using theoretical analysis method. It is analyzed by using the number of stations with both variable payload size and mobile speed on the condition that fading margin and transmission probability are fixed. Especially, in the IEEE 802.11n, A-MSDU (MAC Service Data Unit Aggregation) scheme is considered and the number of subframe is used as the variable parameter. In the IEEE802.11a/g wireless LAN, fixed wireless channel is assumed to be Rayleigh fading channel. Mobile wireless channel is assumed to be flat fading Rayleigh channel with Jake spectrum. The channel is in fading states or inter-fading states by evaluating a certain threshold value of received signal power level. If and only if the whole frame is in inter-fading state, there is the successful frame transmission. If any part of frame is in fading duration, the frame is received in error.