在信息化战争背景下,敌我识别(Identification Friend or Foe,IFF)技术得到快速发展,对敌方IFF系统的有效干扰是保护己方设备安全的重要手段。介绍了一种基于现场可编程逻辑阵列(Filed Programmable Gate Array,FPGA)器件和高速数模转换...在信息化战争背景下,敌我识别(Identification Friend or Foe,IFF)技术得到快速发展,对敌方IFF系统的有效干扰是保护己方设备安全的重要手段。介绍了一种基于现场可编程逻辑阵列(Filed Programmable Gate Array,FPGA)器件和高速数模转换器(Digital to Analog Converter,DAC)的IFF信号模拟器的实现方法,配合IFF侦察系统可实现对敌方IFF系统进行实时、有效的干扰。展开更多
针对目标数量多、目标构成复杂环境下雷达目标与敌我识别(Identification Friend or Foe,IFF)点迹关联不准确的问题,提出了一种基于DS(Dempster-Shafer)证据理论的关联方法。基于区间灰数模型完成雷达目标与IFF点迹的灰关联度计算,并据...针对目标数量多、目标构成复杂环境下雷达目标与敌我识别(Identification Friend or Foe,IFF)点迹关联不准确的问题,提出了一种基于DS(Dempster-Shafer)证据理论的关联方法。基于区间灰数模型完成雷达目标与IFF点迹的灰关联度计算,并据此生成DS证据理论中辨识框架的基本概率赋值;利用Dempster规则对证据进行组合,当证据之间存在冲突时采用改进Murphy方法对数据进行处理;最终通过概率转换方法完成关联判决,形成对目标敌我属性的判定。典型场景下的仿真结果表明,该方法能够实现雷达目标与IFF点迹的有效关联,通过多次询问及关联过程,可提升不同场景下的关联正确率。展开更多
对于雷达与IFF(Identification Friend or Foe)背靠背配置时的关联问题,提出了关联算法.主要包括雷达航迹与IFF点迹的时间对准、判别函数构造、关联判决准则选择和关联判决门限设置等,并讨论了多义性问题.4种典型情况下的仿真结果表明,...对于雷达与IFF(Identification Friend or Foe)背靠背配置时的关联问题,提出了关联算法.主要包括雷达航迹与IFF点迹的时间对准、判别函数构造、关联判决准则选择和关联判决门限设置等,并讨论了多义性问题.4种典型情况下的仿真结果表明,目标间隔与目标到雷达距离之比越大时,关联效果越好;目标交叉时,离交叉点越近,关联效果越差;目标机动阶段时间对准采用雷达航迹平滑的关联效果优于航迹预测,其它情况下采用两种时间对准方法的关联效果相近;在NED(North EastDown)坐标系和极坐标系下的关联效果相近;n/m逻辑应选择2/3或3/4,以同时保证对友方目标的漏关联概率和不明目标的误关联概率都较低.展开更多
为了在非合作条件下对敌我识别(Identification Friend or Foe,IFF)信号进行实时检测,分析IFF应答信号的特征,提出IFF应答信号实时检测技术,对其中基于多相滤波的正交变换、包络检波及脉冲参数精确测量等关键技术进行了分析,并在现场可...为了在非合作条件下对敌我识别(Identification Friend or Foe,IFF)信号进行实时检测,分析IFF应答信号的特征,提出IFF应答信号实时检测技术,对其中基于多相滤波的正交变换、包络检波及脉冲参数精确测量等关键技术进行了分析,并在现场可编程门阵列(FPGA)中进行了实现及测试,证明该技术完全满足工程实现的需求。展开更多
The problem of identification of friend-or-foe aircraft in the actual application condition is addressed.A hybrid algorithm combining fuzzy neutral network with probability factor(FNNP),multi-level fuzzy comprehensi...The problem of identification of friend-or-foe aircraft in the actual application condition is addressed.A hybrid algorithm combining fuzzy neutral network with probability factor(FNNP),multi-level fuzzy comprehensive evaluation and the DempsterShafer(D-S) theory is proposed.This hybrid algorithm constructs a complete process from generating the fuzzy database to the final identification,realizes the identification of friend-or-foe automatically if the training samples or expert’s experience can be obtained,and reduces the effect of uncertainties in the process of identification.At the same time,the whole algorithm can update the identification result with the augment of observations.The performance of the proposed algorithm is assessed by simulations.Results show that the proposed algorithm can successfully deduce the aircraft’s identity even if the observations have measurement errors.展开更多
文摘在信息化战争背景下,敌我识别(Identification Friend or Foe,IFF)技术得到快速发展,对敌方IFF系统的有效干扰是保护己方设备安全的重要手段。介绍了一种基于现场可编程逻辑阵列(Filed Programmable Gate Array,FPGA)器件和高速数模转换器(Digital to Analog Converter,DAC)的IFF信号模拟器的实现方法,配合IFF侦察系统可实现对敌方IFF系统进行实时、有效的干扰。
文摘针对目标数量多、目标构成复杂环境下雷达目标与敌我识别(Identification Friend or Foe,IFF)点迹关联不准确的问题,提出了一种基于DS(Dempster-Shafer)证据理论的关联方法。基于区间灰数模型完成雷达目标与IFF点迹的灰关联度计算,并据此生成DS证据理论中辨识框架的基本概率赋值;利用Dempster规则对证据进行组合,当证据之间存在冲突时采用改进Murphy方法对数据进行处理;最终通过概率转换方法完成关联判决,形成对目标敌我属性的判定。典型场景下的仿真结果表明,该方法能够实现雷达目标与IFF点迹的有效关联,通过多次询问及关联过程,可提升不同场景下的关联正确率。
文摘对于雷达与IFF(Identification Friend or Foe)背靠背配置时的关联问题,提出了关联算法.主要包括雷达航迹与IFF点迹的时间对准、判别函数构造、关联判决准则选择和关联判决门限设置等,并讨论了多义性问题.4种典型情况下的仿真结果表明,目标间隔与目标到雷达距离之比越大时,关联效果越好;目标交叉时,离交叉点越近,关联效果越差;目标机动阶段时间对准采用雷达航迹平滑的关联效果优于航迹预测,其它情况下采用两种时间对准方法的关联效果相近;在NED(North EastDown)坐标系和极坐标系下的关联效果相近;n/m逻辑应选择2/3或3/4,以同时保证对友方目标的漏关联概率和不明目标的误关联概率都较低.
文摘为了在非合作条件下对敌我识别(Identification Friend or Foe,IFF)信号进行实时检测,分析IFF应答信号的特征,提出IFF应答信号实时检测技术,对其中基于多相滤波的正交变换、包络检波及脉冲参数精确测量等关键技术进行了分析,并在现场可编程门阵列(FPGA)中进行了实现及测试,证明该技术完全满足工程实现的需求。
文摘The problem of identification of friend-or-foe aircraft in the actual application condition is addressed.A hybrid algorithm combining fuzzy neutral network with probability factor(FNNP),multi-level fuzzy comprehensive evaluation and the DempsterShafer(D-S) theory is proposed.This hybrid algorithm constructs a complete process from generating the fuzzy database to the final identification,realizes the identification of friend-or-foe automatically if the training samples or expert’s experience can be obtained,and reduces the effect of uncertainties in the process of identification.At the same time,the whole algorithm can update the identification result with the augment of observations.The performance of the proposed algorithm is assessed by simulations.Results show that the proposed algorithm can successfully deduce the aircraft’s identity even if the observations have measurement errors.