Background:Keloid is a fibrotic dermal disease characterized by an abnormal increase in fibroblast proliferation and invasion.These pathological behaviours may be related to the heterogeneity of keloid fibroblasts(KFs...Background:Keloid is a fibrotic dermal disease characterized by an abnormal increase in fibroblast proliferation and invasion.These pathological behaviours may be related to the heterogeneity of keloid fibroblasts(KFs);however,because of a lack of effective biomarkers for KFs it is difficult to study the underlying mechanism.Our previous studies revealed that the expansion of CD26+KFs was responsible for increased keloid proliferation and invasion capabilities;the intrinsic relationship and mechanism between CD26 and keloid is therefore worthy of further investigation.The aim of this studywas to explore molecular mechanisms in the process of CD26 upregulated KFs proliferation and invasion abilities,and provide more evidence for CD26 as an effective biomarker of keloid and a new clinical therapeutic target.Methods:Flow cytometry was performed to isolate CD26+/CD26−fibroblasts from KFs and normal fibroblasts.To generate stably silenced KFs for CD26 and insulin-like growth factor-1 receptor(IGF-1R),lentiviral particles encoding shRNA targeting CD26 and IGF-1R were used for transfection.Cell proliferations were analysed by cell counting kit-8 assay and 5-ethynyl-2-deoxyuridine(EdU)incorporation assay.Scratching assay and transwell assay were used to assess cell migration and invasion abilities.To further quantify the regulatory role of CD26 expression in the relevant signalling pathway,RT-qPCR,western blot,ELISA,PI3K activity assay and immunofluorescence were used.Results:Aberrant expression of CD26 in KFs was proven to be associated with increased proliferation and invasion of KFs.Furthermore,the role of the IGF-1/IGF-1 receptor axis was also studied in CD26 and was found to upregulate KF proliferation and invasion.The PI3K/protein kinase B(AKT)/mammalian target of rapamycin(mTOR)pathway was shown to affect CD26-regulated KF proliferation and invasion by increasing phosphorylation levels of S6 kinase and 4E-binding protein.Conclusions:CD26 can be the effective biomarker for KFs,and its expression is closely related to proliferation and invasion in keloids through the IGF-1-induced PI3K/AKT/mTOR pathway.This work provides a novel perspective on the pathological mechanisms affecting KFs and therapeutic strategies against keloids.展开更多
Objective:To evaluate the effect of the pulse width of electroacupuncture(EA)in the treatment of denervation-induced skeletal muscle atrophy in rats and examine the role of insulin-like growth factor 1(IGF-1)/phosphat...Objective:To evaluate the effect of the pulse width of electroacupuncture(EA)in the treatment of denervation-induced skeletal muscle atrophy in rats and examine the role of insulin-like growth factor 1(IGF-1)/phosphatidylinositol 3-kinase(PI3 K)/Akt signaling pathway during EA.Methods:Sciatic nerve functional index(SFI),muscle wet weight and the cross-sectional area(CSA)of the gastrocnemius muscle were analyzed after treatment in model rats with EA of various pulse widths(0.5,50,100 and 200 ms).The apoptosis index(AI)and paired box(PAX)3 and PAX7 protein expression were also determined.Further,the mRNA and protein expressions of components of IGF-1/PI3 K/Akt pathway and their downstream targets were determined,along with the inhibiting effect of the pathway with a PI3-specific inhibitor.Results:EA with a pulse width of 200 ms was found to have the best effect with regard to increasing SFI,CSA and muscle weight,decreasing AI,and increasing the expression of PAX3 and PAX7.The IGF-1/PI3 K/Akt pathway was found to be activated by denervation,although the downstream forkhead box O(FoxO)pathway was not suppressed by its activation.The PI3 K/Akt pathway and its downstream molecule mammalian target of rapamycin(mTOR)were up-regulated further by EA to promote muscle protein synthesis.Meanwhile,the expressions of downstream FoxO and F-box protein 32(ATROGIN-1)were down-regulated to reduce protein degradation.Conclusions:EA with 200-ms pulse width was found to have a more significant effect than 0.5-ms EA.The positive effects of EA disappeared after inhibition of the PI3 K/Akt pathway.展开更多
Primary biliary cholangitis (PBC) is an autoimmune cholestatic liver disease that progresses to fibrosis and cirrhosis, resulting from the gradual destruction of intrahepatic bile ducts. Exploring genetic variants ass...Primary biliary cholangitis (PBC) is an autoimmune cholestatic liver disease that progresses to fibrosis and cirrhosis, resulting from the gradual destruction of intrahepatic bile ducts. Exploring genetic variants associated with PBC is essential to understand the pathogenesis of PBC. Here we identify a zebrafish balloon dog (blg) mutant with intrahepatic bile duct branching defects, exhibiting several key pathological PBC-like features, including immunodominant autoantigen PDC-E2 production, cholangiocyte apoptosis, immune cell infiltration, inflammatory activation, and liver fibrosis. blg encodes the protein phosphatase 1 regulatory subunit 21 (Ppp1r21), which is enriched in the liver and its peripheral tissues and plays a vital role in the early intrahepatic bile duct formation stage. Further studies show an excessive activation of the PI3K/AKT/mTOR pathway in the hepatic tissues in the mutant, while treatment with the pathway inhibitor LY294002 and rapamycin partially rescues intrahepatic bile duct branching defects and alleviates the PBC-like symptoms. These findings implicate the potential role of the Ppp1r21-mediated PI3K/AKT/mTOR pathway in the pathophysiology of PBC.展开更多
Human epidermal growth factor receptor 2 (HER2) is over-expressed in 20%-25% of invasive breast cancer and is associated with an aggressive tumor phenotype and reduced survival rate. As a clinically widely applied H...Human epidermal growth factor receptor 2 (HER2) is over-expressed in 20%-25% of invasive breast cancer and is associated with an aggressive tumor phenotype and reduced survival rate. As a clinically widely applied HER2-targeted monoclonal antibody, trastuzumab (Herceptin), combined with chemotherapy significantly increases the no tumor survival time of the patient. However, the majority of the cancers that initially respond to Herceptin begin to counter against the treat- ment within 1 year. This review describes several important well-known trastuzumab resistance mechanisms as well as the updated advancement in this field. The sufficiently investigated mechanisms are over-activation of PI3K/AKT pathway, activa- tion of PI3K/AKT via alternative pathway, steric hindrance of receptor-antibody interaction, increase of serum HER2 extracel- lular domain, and abnormal expression of epidermal growth factor receptor (EGFR) family and their ligands. And the newly investigated mechanisms involve Darpp-32 and t-Darpp, autophagy of tumor cells, HSP27, HsP90, c-MYC, ADAM proteases, EphA2, Racl, MUCI*, HER2△16, and mesenchymal CD44(pos)CD24(neg/low) phenotype.展开更多
基金supported by the National Natural Science Foundation of China(81772098,81801917,81801918)the Outstanding Professional and Technical Leader Program of the Shanghai Municipal Science and Technology Commission(18XD1423700)+3 种基金the Clinical Multi-Disciplinary Team Research Program of 9th People’s Hospital,Shanghai Jiao Tong University School of Medicine(2017-1-007)the Clinical Research Program of 9th People’s Hospital,Shanghai Jiao Tong University School of Medicine(JYLJ027)the Shanghai Municipal Education Commission Gaofeng Clinical Medicine Grant Support(20152227)the project of Science and Technology Commission of Shanghai Municipality(17411952800,18441904500).
文摘Background:Keloid is a fibrotic dermal disease characterized by an abnormal increase in fibroblast proliferation and invasion.These pathological behaviours may be related to the heterogeneity of keloid fibroblasts(KFs);however,because of a lack of effective biomarkers for KFs it is difficult to study the underlying mechanism.Our previous studies revealed that the expansion of CD26+KFs was responsible for increased keloid proliferation and invasion capabilities;the intrinsic relationship and mechanism between CD26 and keloid is therefore worthy of further investigation.The aim of this studywas to explore molecular mechanisms in the process of CD26 upregulated KFs proliferation and invasion abilities,and provide more evidence for CD26 as an effective biomarker of keloid and a new clinical therapeutic target.Methods:Flow cytometry was performed to isolate CD26+/CD26−fibroblasts from KFs and normal fibroblasts.To generate stably silenced KFs for CD26 and insulin-like growth factor-1 receptor(IGF-1R),lentiviral particles encoding shRNA targeting CD26 and IGF-1R were used for transfection.Cell proliferations were analysed by cell counting kit-8 assay and 5-ethynyl-2-deoxyuridine(EdU)incorporation assay.Scratching assay and transwell assay were used to assess cell migration and invasion abilities.To further quantify the regulatory role of CD26 expression in the relevant signalling pathway,RT-qPCR,western blot,ELISA,PI3K activity assay and immunofluorescence were used.Results:Aberrant expression of CD26 in KFs was proven to be associated with increased proliferation and invasion of KFs.Furthermore,the role of the IGF-1/IGF-1 receptor axis was also studied in CD26 and was found to upregulate KF proliferation and invasion.The PI3K/protein kinase B(AKT)/mammalian target of rapamycin(mTOR)pathway was shown to affect CD26-regulated KF proliferation and invasion by increasing phosphorylation levels of S6 kinase and 4E-binding protein.Conclusions:CD26 can be the effective biomarker for KFs,and its expression is closely related to proliferation and invasion in keloids through the IGF-1-induced PI3K/AKT/mTOR pathway.This work provides a novel perspective on the pathological mechanisms affecting KFs and therapeutic strategies against keloids.
基金Supported by the National Natural Science Foundation of China(No.81503657,No.81373733)the Basic Research Project of Public Welfare Research Institutes in Fujian Province(No.2016R1033-6)。
文摘Objective:To evaluate the effect of the pulse width of electroacupuncture(EA)in the treatment of denervation-induced skeletal muscle atrophy in rats and examine the role of insulin-like growth factor 1(IGF-1)/phosphatidylinositol 3-kinase(PI3 K)/Akt signaling pathway during EA.Methods:Sciatic nerve functional index(SFI),muscle wet weight and the cross-sectional area(CSA)of the gastrocnemius muscle were analyzed after treatment in model rats with EA of various pulse widths(0.5,50,100 and 200 ms).The apoptosis index(AI)and paired box(PAX)3 and PAX7 protein expression were also determined.Further,the mRNA and protein expressions of components of IGF-1/PI3 K/Akt pathway and their downstream targets were determined,along with the inhibiting effect of the pathway with a PI3-specific inhibitor.Results:EA with a pulse width of 200 ms was found to have the best effect with regard to increasing SFI,CSA and muscle weight,decreasing AI,and increasing the expression of PAX3 and PAX7.The IGF-1/PI3 K/Akt pathway was found to be activated by denervation,although the downstream forkhead box O(FoxO)pathway was not suppressed by its activation.The PI3 K/Akt pathway and its downstream molecule mammalian target of rapamycin(mTOR)were up-regulated further by EA to promote muscle protein synthesis.Meanwhile,the expressions of downstream FoxO and F-box protein 32(ATROGIN-1)were down-regulated to reduce protein degradation.Conclusions:EA with 200-ms pulse width was found to have a more significant effect than 0.5-ms EA.The positive effects of EA disappeared after inhibition of the PI3 K/Akt pathway.
基金This work was supported by the National Natural Science Foundation of China(32270859 and 32192400)the National Key R&D Program of China(2021YFA0805000).
文摘Primary biliary cholangitis (PBC) is an autoimmune cholestatic liver disease that progresses to fibrosis and cirrhosis, resulting from the gradual destruction of intrahepatic bile ducts. Exploring genetic variants associated with PBC is essential to understand the pathogenesis of PBC. Here we identify a zebrafish balloon dog (blg) mutant with intrahepatic bile duct branching defects, exhibiting several key pathological PBC-like features, including immunodominant autoantigen PDC-E2 production, cholangiocyte apoptosis, immune cell infiltration, inflammatory activation, and liver fibrosis. blg encodes the protein phosphatase 1 regulatory subunit 21 (Ppp1r21), which is enriched in the liver and its peripheral tissues and plays a vital role in the early intrahepatic bile duct formation stage. Further studies show an excessive activation of the PI3K/AKT/mTOR pathway in the hepatic tissues in the mutant, while treatment with the pathway inhibitor LY294002 and rapamycin partially rescues intrahepatic bile duct branching defects and alleviates the PBC-like symptoms. These findings implicate the potential role of the Ppp1r21-mediated PI3K/AKT/mTOR pathway in the pathophysiology of PBC.
文摘Human epidermal growth factor receptor 2 (HER2) is over-expressed in 20%-25% of invasive breast cancer and is associated with an aggressive tumor phenotype and reduced survival rate. As a clinically widely applied HER2-targeted monoclonal antibody, trastuzumab (Herceptin), combined with chemotherapy significantly increases the no tumor survival time of the patient. However, the majority of the cancers that initially respond to Herceptin begin to counter against the treat- ment within 1 year. This review describes several important well-known trastuzumab resistance mechanisms as well as the updated advancement in this field. The sufficiently investigated mechanisms are over-activation of PI3K/AKT pathway, activa- tion of PI3K/AKT via alternative pathway, steric hindrance of receptor-antibody interaction, increase of serum HER2 extracel- lular domain, and abnormal expression of epidermal growth factor receptor (EGFR) family and their ligands. And the newly investigated mechanisms involve Darpp-32 and t-Darpp, autophagy of tumor cells, HSP27, HsP90, c-MYC, ADAM proteases, EphA2, Racl, MUCI*, HER2△16, and mesenchymal CD44(pos)CD24(neg/low) phenotype.