在利用GPS CV(GPS Common View)技术进行高精度时间比对时,电离层和卫星位置误差对观测到的卫星信号的影响是不容忽视的,需要对它进行精确的估计和改正.讨论IGS精密星历和CODE全球总电子含量图(TEC MAPs)在GPS时间传递中的应用.计算结...在利用GPS CV(GPS Common View)技术进行高精度时间比对时,电离层和卫星位置误差对观测到的卫星信号的影响是不容忽视的,需要对它进行精确的估计和改正.讨论IGS精密星历和CODE全球总电子含量图(TEC MAPs)在GPS时间传递中的应用.计算结果表明,采用IGS产品可有效提高单站定时和远距离时间传递的精度.展开更多
针对IGS RTS(real time service)实时数据流产品难以避免的数据中断现象,开展了RTS数据中断修复方法研究,提出"插值修复"方法。在对RTS数据中断的区间分布进行统计分析的基础上,选取15min为可修复的最大数据中断区间;采用常...针对IGS RTS(real time service)实时数据流产品难以避免的数据中断现象,开展了RTS数据中断修复方法研究,提出"插值修复"方法。在对RTS数据中断的区间分布进行统计分析的基础上,选取15min为可修复的最大数据中断区间;采用常用的拉格朗日插值方法进行RTS轨道数据中断修复,对不同阶数的插值修复效果进行比较;提出新的基于RTS改正的精密卫星钟差计算方法,采用拉格朗日插值、三次样条插值、线性插值和线性拟合等方法进行RTS钟差数据中断修复和结果对比;最后利用IGS跟踪站观测数据和修复后的RTS产品,进行静态模拟动态的准实时PPP实验,对"插值修复"方法的效果和PPP定位精度进行验证。展开更多
The maritime navigation accuracy requirements for radionavigation systems such as GPS are specified by the International Maritime Organization (IMO). Maritime navigation usually consists of three major phases identifi...The maritime navigation accuracy requirements for radionavigation systems such as GPS are specified by the International Maritime Organization (IMO). Maritime navigation usually consists of three major phases identified as Ocean/Coastal/Port approach/Inland waterway, in port navigation and automatic docking with an accuracy requirement that ranges from 10 m to 0.1 m. With the advancement in autonomous GPS positioning techniques such as Precise Point Positioning (PPP) and with the advent of the new IGS-Real-Time-Service (RTS), it is necessary to assess the possibility of a wider role of the PPP-based positioning technique in maritime applications. This paper investigates the performance of an autonomous real-time PPP-positioning solution by using the IGS- RTS service for maritime applications that require an accurate positioning system. To examine the performance of the real-time IGS-RTS PPP-based technique for maritime applications, kinematic data from a dual frequency GPS receiver is investigated. It is shown that the real-time IGS-RTS PPP-based GPS positioning technique fulfills IMO requirements for maritime applications with an accuracy requirement ranges from 10 m for Ocean/Coastal/Port approach/Inland waterways navigation to 1.0 m for in port navigation but cannot fulfill the automatic docking application with an accuracy requirement of 0.10 m. To further investigate the real-time PPP-based GPS positioning technique, a comparison is made between the real-time IGS-RTS PPP-based positioning technique and the real-time PPP-based positioning by using the predicted part of the IGS Ultra-Rapid products and the real-time GPS positioning technique with the Wide Area Differential GPS service (WADGPS). It is shown that the IGS-RTS PPP-based positioning technique is superior to the IGS-Ultra-Rapid PPP-based and WADGPS-based positioning techniques.展开更多
文摘在利用GPS CV(GPS Common View)技术进行高精度时间比对时,电离层和卫星位置误差对观测到的卫星信号的影响是不容忽视的,需要对它进行精确的估计和改正.讨论IGS精密星历和CODE全球总电子含量图(TEC MAPs)在GPS时间传递中的应用.计算结果表明,采用IGS产品可有效提高单站定时和远距离时间传递的精度.
文摘针对IGS RTS(real time service)实时数据流产品难以避免的数据中断现象,开展了RTS数据中断修复方法研究,提出"插值修复"方法。在对RTS数据中断的区间分布进行统计分析的基础上,选取15min为可修复的最大数据中断区间;采用常用的拉格朗日插值方法进行RTS轨道数据中断修复,对不同阶数的插值修复效果进行比较;提出新的基于RTS改正的精密卫星钟差计算方法,采用拉格朗日插值、三次样条插值、线性插值和线性拟合等方法进行RTS钟差数据中断修复和结果对比;最后利用IGS跟踪站观测数据和修复后的RTS产品,进行静态模拟动态的准实时PPP实验,对"插值修复"方法的效果和PPP定位精度进行验证。
文摘The maritime navigation accuracy requirements for radionavigation systems such as GPS are specified by the International Maritime Organization (IMO). Maritime navigation usually consists of three major phases identified as Ocean/Coastal/Port approach/Inland waterway, in port navigation and automatic docking with an accuracy requirement that ranges from 10 m to 0.1 m. With the advancement in autonomous GPS positioning techniques such as Precise Point Positioning (PPP) and with the advent of the new IGS-Real-Time-Service (RTS), it is necessary to assess the possibility of a wider role of the PPP-based positioning technique in maritime applications. This paper investigates the performance of an autonomous real-time PPP-positioning solution by using the IGS- RTS service for maritime applications that require an accurate positioning system. To examine the performance of the real-time IGS-RTS PPP-based technique for maritime applications, kinematic data from a dual frequency GPS receiver is investigated. It is shown that the real-time IGS-RTS PPP-based GPS positioning technique fulfills IMO requirements for maritime applications with an accuracy requirement ranges from 10 m for Ocean/Coastal/Port approach/Inland waterways navigation to 1.0 m for in port navigation but cannot fulfill the automatic docking application with an accuracy requirement of 0.10 m. To further investigate the real-time PPP-based GPS positioning technique, a comparison is made between the real-time IGS-RTS PPP-based positioning technique and the real-time PPP-based positioning by using the predicted part of the IGS Ultra-Rapid products and the real-time GPS positioning technique with the Wide Area Differential GPS service (WADGPS). It is shown that the IGS-RTS PPP-based positioning technique is superior to the IGS-Ultra-Rapid PPP-based and WADGPS-based positioning techniques.