Objective:To study the effects of Shenqi Tiaoshen Formula(SQTS)on the inflammatory response of MH-S cells induced by cigarette smoking extract(CSE)and its mechanism based on TLR4/NF-kB/NLRP3 pathway.Methods:MH-S cells...Objective:To study the effects of Shenqi Tiaoshen Formula(SQTS)on the inflammatory response of MH-S cells induced by cigarette smoking extract(CSE)and its mechanism based on TLR4/NF-kB/NLRP3 pathway.Methods:MH-S cells were used as subjects to evaluate cell viability by CCK-8 method.The levels of TNF-α,IL-1βand IL-6 in the supernatant were detected by ELISA.ROS were detected by DCFH-DA fluorescence probe.Western blotting was used to detect the expression of TLR4/NF-kB/NLRP3 pathway protein,and TAK-242,a TLR4 inhibitor,was used to verify the role of SQTS in the TLR4/NF-kB/NLRP3 pathway.Results:Compared with blank group,the cell survival rate of CSE group was decreased,and the contents of inflammatory cytokines TNF-α,IL-1βand IL-6 were increased(P<0.05),ROS fluorescence expression level was significantly increased(P<0.01),TLR4/NF-kB/NLRP3 pathway protein expression was significantly increased(P<0.05);Compared with CSE group,the survival rate of cells in SQTS groups was increased,and the expression levels of the above indexes were decreased(P<0.05),and TLR4/NF-kB/NLRP3 pathway protein decreased in TAK-242 groups(P<0.05).Conclusion:SQTS can reduce the inflammatory response of MH-S cells induced by CSE by inhibiting TLR4/NF-kB/NLRP3 pathway.展开更多
AIM Prostaglandin A1(PGA1) is a cyclopentenone prostaglandin. Recently, we reported that PGA1 can inhibit excitotoxin-induced apoptosis of striatal neurons in vivo and rotenone-induced apoptosis ofcultured SH-SY5Y cel...AIM Prostaglandin A1(PGA1) is a cyclopentenone prostaglandin. Recently, we reported that PGA1 can inhibit excitotoxin-induced apoptosis of striatal neurons in vivo and rotenone-induced apoptosis ofcultured SH-SY5Y cells, suggesting that PGA1 may have neuroprotective efficacy, possibly mediated by inhibition of NF-kB activation. The present study evaluated the neuroprotective potential of PGA1 and its effect on IKK/I( B/NF-kB/c-myc signaling pathway in rat models of permanent focal cerebral ischemia. METHODS Permanent middle cerebral artery occlusion (pMCAO) model was constructed by intraluminal suture cannulation through the internal carotid artery in Wistar rats.展开更多
BACKGROUND Ulcerative colitis(UC)is a chronic,nonspecific intestinal inflammatory disease with undefined pathogenesis.Non-SMC condensin I complex subunit D2(NCAPD2)and non-SMC condensin II complex subunit D3(NCAPD3)pl...BACKGROUND Ulcerative colitis(UC)is a chronic,nonspecific intestinal inflammatory disease with undefined pathogenesis.Non-SMC condensin I complex subunit D2(NCAPD2)and non-SMC condensin II complex subunit D3(NCAPD3)play pivotal roles in chromosome assembly and segregation during both mitosis and meiosis.To date,there has been no relevant report about the functional role of NCAPD2 and NCAPD3 in UC.AIM To determine the level of NCAPD2/3 in intestinal mucosa and explore the mechanisms of NCAPD2/3 in UC.METHODS Levels of NCAPD2/3 in intestinal tissue were detected in 30 UC patients and 30 healthy individuals with in situ hybridization(ISH).In vitro,NCM60 cells were divided into the NC group,model group,si-NCAPD2 group,si-NCAPD3 group and si-NCAPD2+si-NCAPD3 group.Inflammatory cytokines were measured by ELISA,IKK and NF-κB were evaluated by western blot,and IKK nucleation and NF-κB volume were analyzed by immunofluorescence assay.RESULTS Compared with expression in healthy individuals,NCAPD2 and NCAPD3 expression in intestinal tissue was significantly upregulated(P<0.001)in UC patients.Compared with levels in the model group,IL-1β,IL-6 and TNF-αin the si-NCAPD2,si-NCAPD3 and si-NCAPD2+si-NCAPD3 groups were significantly downregulated(P<0.01).IKK and NF-κB protein expression in the si-NCAPD2,si-NCAPD3 and si-NCAPD2+si-NCAPD3 groups was significantly decreased(P<0.01).Moreover,IKK nucleation and NF-κB volume were suppressed upon si-NCAPD2,si-NCAPD3 and si-NCAPD2+si-NCAPD3 transfection.CONCLUSION NCAPD2/3 is highly expressed in the intestinal mucosa of patients with active UC.Overexpression of NCAPD2/3 promotes the release of pro-inflammatory cytokines by modulating the IKK/NF-κB signaling pathway.展开更多
Aim Magnesium lithospermate B (MLB) is the most abundant hydrophilic active component of Salvia rniltiorrhiza Radix, a traditional Chinese herbal medicine mainly used to treat cardiovascular diseases. Studies have s...Aim Magnesium lithospermate B (MLB) is the most abundant hydrophilic active component of Salvia rniltiorrhiza Radix, a traditional Chinese herbal medicine mainly used to treat cardiovascular diseases. Studies have shown that endothelial activation contributes to the pathophysiology of cardiovascular diseases such as atherosclero- sis, diabetic vasculopathy, heart failure and hypertension. In the present study, the effects of MLB on endothelial activation were investigated. Lipopolysaccharide (LPS) 1 mg L^-1 was employed to induce endothelial activation, which was determined by relative gene expression and endothelial adhesion assay. Results showed that pretreatment with MLB attenuated LPS-induced ICAM1, VCAM1 and TNF-α upregulation in human dermal microvascular endo- thelial cells (HMEC-1) in dose-dependent manner, which contributed to the reduction of THP-1 adhesion to HMEC-1. Furthermore, it was revealed that 100 μmol · L^-1 MLB significantly decreased the nuclear translocation of NF-KB p65, a critical transcription factor in LPS-indueed inflammatory response, through the inhibition of IKBμ degradation. Besides, the transcriptional activity of NF-KB p65 was also inhibited by the pretreatment of MLB. Mo- reover, MLB pretreatment considerably inhibited LPS-induced p38 phosphorylation, which at least partly contribu- ted to the reduction of ICAM1 expression. In conclusion, these findings suggest that MLB inhibits LPS-induced nu- clear translocation and transcripitional activity of NF-KB, thus attenuates the increased expression of adhesion mole- cules and inflammatory factors, protects endothelial cells from LPS-induced activation.展开更多
OBJECTIVE The greatest challenge in chemotherapy of ischemic stroke is the construction a suitable delivery system to overcome the poor physicochemical properties of drug and its low permeability across the blood brai...OBJECTIVE The greatest challenge in chemotherapy of ischemic stroke is the construction a suitable delivery system to overcome the poor physicochemical properties of drug and its low permeability across the blood brain barrier(BBB).METHODS In the present study,dendrimer,polyamidoamine(PAMAM),was synthesized as the nano-drug carriers.Angiopep-2,which has been proved excellent ability to cross the BBB,was exploited as the targeting ligand to conjugate PAMAM via bifunctional polyethylene glycol(PEG).Then scutellarin(STA)was encapsulated into the functionalized nanoparticles(NPs)to formulate Angiopep-2 modified STA-loaded PEG-PAMAM NPs.Ischemic stroke model was established to evaluate the treatment efficacy and protective mechanism of Angiopep-2-STA-PEG-PAMAM NPs.RESULTS The pharmacokinetics and biodistribu-tion demonstrated that Angiopep-2-STA-PEG-PAMAM NPs exhibited significantly higher plasma concentration from 1 h to 10 h after intravenous administration and improve accumulation in brain(4.7-fold)compared with STA solution.Moreover,prolonged elimination half-life(4.8-fold)and lower clearance(3.4-fold)were observed.The brain uptake study of 6-coumarin confirmed that Angiopep-2-PEG-PAMAM NPs possessed better brain targeting efficacy(3.2-fold)than PEG-PAMAM NPs.Angiopep-2-STA-PEG-PAMAM NPs obviously ameliorated infarct volume,neurological deficit,histopathological severity and neuronal apoptosis.In addition,Angiopep-2-STA-PEG-PAMAM NPs markedly inhibited the calcium content and the levels of IL-12p40,IL-13,IL-17 and IL-23.Furthermore,Angiopep-2-STA-PEG-PAMAM NPs significantly decreased the m RNA and protein expressions of HMGB1,TLR2,TLR4,TLR5,My D88,TRIF,TRAM,IRAK-4,TRAF6,IкBα,IKKβand NF-кBp65.CONCLUSION The results suggested that Angiopep-2modified scutellarin-loaded PEG-PAMAM nanocarriers possessed remarkable neuroprotective effects on ischemic stroke through modulation of inflammatory cascades and HMGB1/TLRs/MyD 88-induced NF-κB activation pathways.展开更多
Endocrine therapy that blocks estrogen signaling is the most effective treatment for patients with estrogen receptor positive(ER+)breast cancer.However,the efficacy of agents such as tamoxifen(Tam)is often compromised...Endocrine therapy that blocks estrogen signaling is the most effective treatment for patients with estrogen receptor positive(ER+)breast cancer.However,the efficacy of agents such as tamoxifen(Tam)is often compromised by the development of resistance.Here we report that cytokines-activated nuclear IKKαconfers Tam resistance to ER+breast cancer by inducing the expression of FAT10,and that the expression of FAT10 and nuclear IKKαin primary ER+human breast cancer was correlated with lymphotoxinβ(LTB)expression and significantly associated with relapse and metastasis in patients treated with adjuvant mono-Tam.IKKαactivation or enforced FAT10 expression promotes Tam-resistance while loss of IKKαor FAT10 augments Tam sensitivity.The induction of FAT10 by IKKαis mediated by the transcription factor Pax5,and coordinated via an IKKα-p53-miR-23a circuit in which activation of IKKαattenuates p53-directed repression of FAT10.Thus,our findings establish IKKα-to-FAT10 pathway as a new therapeutic target for the treatment of Tam-resistant ER+breast cancer.展开更多
Tripartite motif containing 22 (TRIM22), a member of the TRIM/RBCC family, has been reported to activate the nuclear factor-kappa B (NF-kB) pathway in unstimulated macrophage cell lines, but the detailed mechanism...Tripartite motif containing 22 (TRIM22), a member of the TRIM/RBCC family, has been reported to activate the nuclear factor-kappa B (NF-kB) pathway in unstimulated macrophage cell lines, but the detailed mechanisms governing this activation remains unclear. We investigated this mechanism in HEK293T cells. We found that overexpression of TRIM22 could activate the NF-kB pathway and conversely, could inhibit the tumor necrosis factor receptor-associated factor 6 (TRAF6)-stimulated NF-kB pathway in HEK293T cells. Further experiments showed that TRIM22 could decrease the self-ubiquitination of TRAF6, and interact with and degrade transforming growth factor-13 activated kinase 1 binding protein 2 (TAB2), and that these effects could be partially rescued by a TRIM22 RING domain deletion mutant. Collectively, our data indicate that overexpression of TRIM22 may negatively regulate the TRAF6-stimulated NF-rd3 pathway by interacting with and degrading TAB2.展开更多
Aim Ginseng is the dried root of Panax ginseng C. A. Mayer. Since ancient times, ginseng has been used as one kind of treatment drug or tonic in China and even other eastern countries like Korea and Japan. Phar- macol...Aim Ginseng is the dried root of Panax ginseng C. A. Mayer. Since ancient times, ginseng has been used as one kind of treatment drug or tonic in China and even other eastern countries like Korea and Japan. Phar- macological active chemical ingredients and its extract of ginseng are a mixture of triterpenoid saponins, collectively called ginsenosides. Among them, ginsenoside Rgl is the most pharmacological active one. Based on prior experi- mental results and the understanding of alcoholic hepatitis, the major aim of this study is to investigate whether Rgl is beneficial in a rodent model mimic alcoholic hepatic injury associated with binge drinking and explore the under- lying possible mechanisms. Methods C57BL/6 mice were given oral consumption of 6 g · kg^-1 alcohol 1 h after treated with Rgl ( 10, 20 and 40 mg · kg^-1) or dexamethasone ( 1 mg · kg^-1) for 9 consecutive days. Biochemi- cal analyses were performed and liver fragments were processed for microscopy, immunohistochemistry and western blot analysis. Results According to our data, Rgl treatment significantly reversed the high mortality rate induced by alcohol consumption and also alleviated liver impairment as evidenced by the decrease of serum parameters. Meanwhile, histological and ultrastructural analysis of alcoholic groups showed hepatocellular impairment but re- stored in Rgl-treated groups. Overproductive inflammatory cytokines were also suppressed by Rgl in alcohol-intoxi- cated mouse livers. In addition, changes of GR related NF-KB pathway, including phospho-IKB-ot, were also mod- ulated to normal levels. Conclusion This study demonstrates that Rgl might promote GR mediating the repression of NF-KB and inhibit the inflammatory reactions in alcoholic hepatitis.展开更多
The nuclear factor-KB (NF-KB) transcription factors control many physiological processes including in- flammation, immunity, apoptosis, and angiogenesis. In our search for NF-KB inhibitors from natural resources, we...The nuclear factor-KB (NF-KB) transcription factors control many physiological processes including in- flammation, immunity, apoptosis, and angiogenesis. In our search for NF-KB inhibitors from natural resources, we identified 4',6-dihydroxy-4-methoxyisoaurone (ISOA) as an inhibitor of NF-KB activation from the seeds of Tricho- santhes kirilowii. However, the mechanism by which ISOA inhibits NF-KB activation is not fully understood. In the present study, we demonstrated the effect of ISOA on NF-KB activation in TNF-α-stimulated HeLa cells. This com- pound suppressed NF-KB activation through the inhibition of IKB kinase (IKK) activation. ISOA also has an influ- ence on upstream signaling of IKK through the inhibition of expression of adaptor proteins, TNF receptor-associated factor 2 (TRAF2) and receptor interacting protein 1 (RIP1). Consequently, ISOA blocked the phosphorylation and degradation of the inhibitor of NF-KB alpha (IKBα) , and subsequent phosphorylation and nuclear translocation of p65. The suppression of NF-KB activation by ISOA led to the down-regulation of target genes involved in inflam- mation, proliferation, angiogenesis and invasion, as well as potentiation of TNF-α-induced apoptosis at least in part through activation of caspase-8. Taken together, this study extends our understanding on the mechanisms underly- ing the anti-inflammatory and anti-cancer activities of ISOA. Our findings provide new insight into the molecular mechanisms and a potential application of ISOA for inflammatory diseases as well as certain cancers associated with abnormal NF-KB activation.展开更多
Glioma is a common tumor originating in the brain that has a high mortality rate.Temozolomide(TMZ)is the first-line treatment for high-grade gliomas.However,a large pro-portion of gliomas are resistant to TMZ,posing a...Glioma is a common tumor originating in the brain that has a high mortality rate.Temozolomide(TMZ)is the first-line treatment for high-grade gliomas.However,a large pro-portion of gliomas are resistant to TMZ,posing a great challenge to their treatment.In the study,the specific functions and mechanism(s)by which cortistatin(CORT)regulates TMZ resis-tance and glioma progression were evaluated.The decreased expression of CoRT was detected in glioma tissues,and highly expressed CORT was associated with a better survival rate in pa-tients with glioma.CORT overexpression notably decreased the capacity of glioma cells to pro-liferate and migrate in vitro and to form tumors in vivo.CORT overexpression also markedly suppressed the viability and enhanced the apoptosis of TMZ-resistant U251 cells by regulating MGMT,p21,and Puma expression.Importantly,CORT overexpression reduced the resistance of gliomas to TMZ in vivo.CORT expression Was negatively correlated with MGMT expression in both glioma tissues and cells,and it was found that CORT inhibited NF-kB pathway activation in glioma cells,thereby inhibiting MGMT expression.In conclusion,CORT regulates glioma cell growth,migration,apoptosis,and TMZ resistance by weakening the activity of NF-kB/p65 and thereby regulating MGMT expression.The CORT/NF-kB/MGMT axis might be regarded as a molecular mechanism contributing to the resistance of glioma to TMZ.Our data also suggest that CORT regulates the viability and metastatic potential of glioma cells,independent of its effects on TMZ resistance,providing evidence of novel therapeutic targets for glioma that should be evaluated infurther studies.展开更多
Parkinson’s disease(PD)is the second most common neurodegenerative disease,but none of the current treatments for PD can halt the progress of the disease due to the limited understanding of the pathogenesis.In PD dev...Parkinson’s disease(PD)is the second most common neurodegenerative disease,but none of the current treatments for PD can halt the progress of the disease due to the limited understanding of the pathogenesis.In PD development,the communication between the brain and the gastrointestinal system influenced by gut microbiota is known as microbiota-gut-brain axis.However,the explicit mechanisms of microbiota dysbiosis in PD development have not been well elucidated yet.FLZ,a novel squamosamide derivative,has been proved to be effective in many PD models and is undergoing the phase I clinical trial to treat PD in China.Moreover,our previous pharmacokinetic study revealed that gut microbiota could regulate the absorption of FLZ in vivo.The aims of our study were to assess the protective effects of FLZ treatment on PD and to further explore the underlying microbiota-related mechanisms of PD by using FLZ as a tool.In the current study,chronic oral administration of rotenone was utilized to induce a mouse model to mimic the pathological process of PD.Here we revealed that FLZ treatment alleviated gastrointestinal dysfunctions,motor symptoms,and dopaminergic neuron death in rotenone-challenged mice.16 S rRNA sequencing found that PD-related microbiota alterations induced by rotenone were reversed by FLZ treatment.Remarkably,FLZ administration attenuated intestinal inflammation and gut barrier destruction,which subsequently inhibited systemic inflammation.Eventually,FLZ treatment restored blood-brain barrier structure and suppressed neuroinflammation by inhibiting the activation of astrocytes and microglia in the substantia nigra(SN).Further mechanistic research demonstrated that FLZ treatment suppressed the TLR4/MyD88/NF-κB pathway both in the SN and colon.Collectively,FLZ treatment ameliorates microbiota dysbiosis to protect the PD model via inhibiting TLR4 pathway,which contributes to one of the underlying mechanisms beneath its neuroprotective effects.Our research also supports the importance of microbiota-gut-brain axis in PD pathogenesis,suggesting its potential role as a novel therapeutic target for PD treatment.展开更多
Summary:Interleukin 17A(IL 17A)is reported to be involved in many inflammatory processes,but its role in aortic valve diseases remains unknown.We examined the role of IL17A based on an ApoE^-/-mouse model with strateg...Summary:Interleukin 17A(IL 17A)is reported to be involved in many inflammatory processes,but its role in aortic valve diseases remains unknown.We examined the role of IL17A based on an ApoE^-/-mouse model with strategies as fed with high-fat diet or treated with ILI7A monoclonal antibody(mAb).12 weeks of high-fat diet feeding can elevate cytokines secretion,inflammatory cells infiltration and myofibroblastic transition of valvular interstitial cells(VICs)in aortic valve.Moreover,diet-induction accelerated interleukin 17 receptor A(IL17RA)activation in VICs.In an IL17A inhibition model,the treatment group was intra-peritoneally injected with anti-IL17A mAb while controls received irrelevant antibody.Functional blockade of IL17A markedly reduced cellular infiltration and transition in aortic valve.To investigate potential mechanisms,NF-kB was co-stained in IL17RA^+VICs and IL17RA macrophages,and further confirmed by Western blotting in VICs.High-fat diet could activate NF-kB nuclear translocation in IL17RA^+VICs and IL17RA^+macrophages and this process was depressed after IL17A mAb-treatment.In conclusion,high-fat diet can lead to IL17A upregulation,VICs myofibroblastic transition and inflammatory cells infiltration in the aortic value of ApoE^-/-mice.Blocking IL17A with IL17A mAb can alleviate aortic valve inflammatory states.展开更多
Aim YiQiFuMai Powder Injection is a well-known traditional Chinese medicine formula that has been used extensively in clinical treatment of cardio-cerebral ischemic diseases in China. However, the mechanisms under-lyi...Aim YiQiFuMai Powder Injection is a well-known traditional Chinese medicine formula that has been used extensively in clinical treatment of cardio-cerebral ischemic diseases in China. However, the mechanisms under-lying its clinical efficacy remain unknown. In this study, a network pharmacology approach was employed to identify the YiQiFuMai Powder Injection's potential pathways and targets against cardio-cerebral ischemia. The target-path- way interaction network clustered the signaling pathways based on high degree nodes of the drug-target network. The potential protein targets presented in the highly scored clustered pathways were the key network hubs and concentrated on one or limited functional signaling pathways amenable to experimental verification. Twelve main functional annota- tion clusters and main signaling pathways for YiQiFuMai Powder Injection were established by Biocarta analysis, in- eluding the NF-KB signaling pathway, the MAPKinase signaling pathway and the mTOR-signaling pathway and so on. YiQiFuMai Powder Injection is hypothesized to target multiple proteins with a high degree and betweenness of net- work. In addition, the most related pathways were also confirmed in tumor necrosis factor-alpha (TNF-oL) induced human vascular endothelial cell line EA. hy926 by Western blot. This study elucidates the systematic network and pathway analysis of multi-targets in YiQiFuMai Powder Injection. The results provide the possible mechanisms for its mode of action against cardio-cerebral ischemic diseases and may also reveal new clues for its potential application in the inflammatory diseases or tumors.展开更多
OBJECTIVE: To observe the effect of stimulating Qihai(CV 6) and bilateral Tianshu(ST 25) with herb-partitioned moxibustion(HPM) in rats with Crohn's disease(CD), and to investigate the possible anti-inflammatory m...OBJECTIVE: To observe the effect of stimulating Qihai(CV 6) and bilateral Tianshu(ST 25) with herb-partitioned moxibustion(HPM) in rats with Crohn's disease(CD), and to investigate the possible anti-inflammatory mechanism of HPM.METHODS: Forty rats were randomly divided into four groups(n = 10 rats per group): normal control(NC), model control(MC), mesalamine(MES), and HPM. The CD rat model was established in the MC,MES, and HPM groups by administering a mixture of trinitrobenzenesulfonic acid and alcohol via enema. The HPM group received HPM on Qihai(CV 6)and bilateral Tianshu(ST 25), while the MES group received intragastric mesalamine. Colonic histomorphological scores, and serum concentrations of tumor necrosis factor α(TNF-α) and interleukin 1β(IL-1β) were assessed to evaluate the effects of HPM on colonic reparation and anti-inflammation.The expressions of Toll-like receptor 4(TLR-4), nuclear factor κB inhibitor α(IκB-α), IκB kinase α/β(IKKα/β), and NF-κB p65 were further analyzed to investigate the regulatory effects of the interventions on the TLR4/NF-κB pathway.RESULTS: CD rats showed inflammatory colonic damage and increased serum concentrations of TNF-α and IL-1β. The expressions of TLR4, IKKα/β,and NF-κB p65 in the colons of CD rats were significantly increased compared with the NC group,while the expression of IκBα(a key negative regulator of NF-κB p65) was decreased. HPM significantly mitigated colonic damage and reduced the serum concentrations of TNF-α and IL-1β. HPM downregulated the expressions of TLR4, IKKα/β, and NF-κB p65 in the colon, and upregulated the expression of IκBα. The effects of HPM in CD rats were similar to those of mesalamine.CONCLUSION: HPM alleviates colonic inflammation in CD rats. This may be achieved through regulation of TLR4, which induces NF-κB signal transduction.展开更多
Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)-induced cytokine storm is closely associated with coronavirus disease 2019(COVID-19)severity and lethality.However,drugs that are effective against inflammat...Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)-induced cytokine storm is closely associated with coronavirus disease 2019(COVID-19)severity and lethality.However,drugs that are effective against inflammation to treat lethal COVID-19 are still urgently needed.Here,we constructed a SARS-CoV-2 spike protein-specific CAR,and human T cells infected with this CAR(SARS-CoV-2-S CAR-T)and stimulated with spike protein mimicked the T-cell responses seen in COVID-19 patients,causing cytokine storm and displaying a distinct memory,exhausted,and regulatory T-cell phenotype.THP1 remarkably augmented cytokine release in SARS-CoV-2-S CAR-T cells when they were in coculture.Based on this"two-cell"(CAR-T and THP1 cells)model,we screened an FDA-approved drug library and found that felodipine,fasudil,imatinib,and caspofungin were effective in suppressing the release of cytokines,which was likely due to their ability to suppress the NF-kB pathway in vitro.Felodipine,fasudi,imatinib,and caspofungin were further demonstrated,although to different extents,to attenuate lethal inflammation,ameliorate severe pneumonia,and prevent mortality in a SARS-CoV-2-infected Syrian hamster model,which were also linked to their suppressive role in inflammation.In summary,we established a SARS-CoV-2-specific CAR-T-cell model that can be utilized as a tool for anti-inflammatory drug screening in a fast and high-throughput manner.The drugs identified herein have great potential for early treatment to prevent COVID-19 patients from cytokine storm-induced lethality in the clinic because they are safe,inexpensive,and easily accessible for immediateuseinmostcountries.展开更多
Using forward and reverse genetics and global gene expression analyses, we explored the crosstalk between the IKB kinase β (IKKβ) and the transforming growth factor β (TGFβ) signaling pathways. We show that in...Using forward and reverse genetics and global gene expression analyses, we explored the crosstalk between the IKB kinase β (IKKβ) and the transforming growth factor β (TGFβ) signaling pathways. We show that in vitro ablation of Ikkβ in fibroblasts led to progressive ROS accumulation and TGFβ activation, and ultimately accelerated cell migration, fibroblast-myofibroblast transformation and senescence. Mechanistically, the basal IKKβ activity was required for anti-oxidant gene expression and redox homeostasis. Lacking this activity, IKKβ-null cells showed ROS accumulation and activation of stress-sensitive transcription factor AP-1/c- Jun. AP-1/c-Jun activation led to up-regulation of the Tgfβ2 promoter, which in turn further potentiated intracellular ROS through the induction of NADPH oxidase (NOX). These data suggest that by blocking the autocrine amplification of a ROS-TGFβ loop IKKβ plays a crucial role in the prevention of fibroblast-myofibroblast transformation and senescence.展开更多
Porcine reproductive and respiratory syndrome virus(PRRSV) continues to cause significant economic loss worldwide and remains a serious threat to the pork industry. Currently, vaccination strategies provide limited pr...Porcine reproductive and respiratory syndrome virus(PRRSV) continues to cause significant economic loss worldwide and remains a serious threat to the pork industry. Currently, vaccination strategies provide limited protection against PRRSV infection, and consequently, new antiviral strategies are urgently required. Andrographolide(Andro) and its derivative potassium dehydrographolide succinate(PDS) have been used clinically in China and other Asian countries as therapies for inflammation-related diseases, including bacterial and viral infections, for decades. Here, we demonstrate that Andro and PDS exhibit robust activity against PRRSV replication in Marc-145 cells and primary porcine alveolar macrophages(PAMs). The two compounds exhibited broad-spectrum inhibitory activities in vitro against clinically circulating type 2 PRRSV GD-HD, XH-GD, and NADC30-like HNhx strains in China. The EC_(50)values of Andro against three tested PRRSV strain infections in Marc-145 cells ranged from 11.7 to 15.3 lmol/L, with selectivity indexes ranging from 8.3 to10.8, while the EC_(50)values of PDS ranged from 57.1 to 85.4 lmol/L, with selectivity indexes ranging from 344 to 515.Mechanistically, the anti-PRRSV activity of the two compounds is closely associated with their potent suppression on NFj B activation and enhanced oxidative stress induced by PRRSV infection. Further mechanistic investigations revealed that PDS, but not Andro, is able to directly interact with PRRSV particles. Taken together, our findings suggest that Andro and PDS are promising PRRSV inhibitors in vitro and deserves further in vivo studies in swine.展开更多
基金Regional Innovation Development Joint Fund of National Natural Science Foundation of China(No.U20A20398)Clinical Medical Research Transformation Project of Anhui Provincial Science and Technology Department(No.202204295107020045)。
文摘Objective:To study the effects of Shenqi Tiaoshen Formula(SQTS)on the inflammatory response of MH-S cells induced by cigarette smoking extract(CSE)and its mechanism based on TLR4/NF-kB/NLRP3 pathway.Methods:MH-S cells were used as subjects to evaluate cell viability by CCK-8 method.The levels of TNF-α,IL-1βand IL-6 in the supernatant were detected by ELISA.ROS were detected by DCFH-DA fluorescence probe.Western blotting was used to detect the expression of TLR4/NF-kB/NLRP3 pathway protein,and TAK-242,a TLR4 inhibitor,was used to verify the role of SQTS in the TLR4/NF-kB/NLRP3 pathway.Results:Compared with blank group,the cell survival rate of CSE group was decreased,and the contents of inflammatory cytokines TNF-α,IL-1βand IL-6 were increased(P<0.05),ROS fluorescence expression level was significantly increased(P<0.01),TLR4/NF-kB/NLRP3 pathway protein expression was significantly increased(P<0.05);Compared with CSE group,the survival rate of cells in SQTS groups was increased,and the expression levels of the above indexes were decreased(P<0.05),and TLR4/NF-kB/NLRP3 pathway protein decreased in TAK-242 groups(P<0.05).Conclusion:SQTS can reduce the inflammatory response of MH-S cells induced by CSE by inhibiting TLR4/NF-kB/NLRP3 pathway.
文摘AIM Prostaglandin A1(PGA1) is a cyclopentenone prostaglandin. Recently, we reported that PGA1 can inhibit excitotoxin-induced apoptosis of striatal neurons in vivo and rotenone-induced apoptosis ofcultured SH-SY5Y cells, suggesting that PGA1 may have neuroprotective efficacy, possibly mediated by inhibition of NF-kB activation. The present study evaluated the neuroprotective potential of PGA1 and its effect on IKK/I( B/NF-kB/c-myc signaling pathway in rat models of permanent focal cerebral ischemia. METHODS Permanent middle cerebral artery occlusion (pMCAO) model was constructed by intraluminal suture cannulation through the internal carotid artery in Wistar rats.
基金Supported by National Natural Science Foundation of China,No.81673973Natural Science Foundation of Jiangsu Province,China,No.BK20161577the Developing Program for Highlevel Academic Talent from Jiangsu Hospital of Chinese Medicine,No.y2018rc16
文摘BACKGROUND Ulcerative colitis(UC)is a chronic,nonspecific intestinal inflammatory disease with undefined pathogenesis.Non-SMC condensin I complex subunit D2(NCAPD2)and non-SMC condensin II complex subunit D3(NCAPD3)play pivotal roles in chromosome assembly and segregation during both mitosis and meiosis.To date,there has been no relevant report about the functional role of NCAPD2 and NCAPD3 in UC.AIM To determine the level of NCAPD2/3 in intestinal mucosa and explore the mechanisms of NCAPD2/3 in UC.METHODS Levels of NCAPD2/3 in intestinal tissue were detected in 30 UC patients and 30 healthy individuals with in situ hybridization(ISH).In vitro,NCM60 cells were divided into the NC group,model group,si-NCAPD2 group,si-NCAPD3 group and si-NCAPD2+si-NCAPD3 group.Inflammatory cytokines were measured by ELISA,IKK and NF-κB were evaluated by western blot,and IKK nucleation and NF-κB volume were analyzed by immunofluorescence assay.RESULTS Compared with expression in healthy individuals,NCAPD2 and NCAPD3 expression in intestinal tissue was significantly upregulated(P<0.001)in UC patients.Compared with levels in the model group,IL-1β,IL-6 and TNF-αin the si-NCAPD2,si-NCAPD3 and si-NCAPD2+si-NCAPD3 groups were significantly downregulated(P<0.01).IKK and NF-κB protein expression in the si-NCAPD2,si-NCAPD3 and si-NCAPD2+si-NCAPD3 groups was significantly decreased(P<0.01).Moreover,IKK nucleation and NF-κB volume were suppressed upon si-NCAPD2,si-NCAPD3 and si-NCAPD2+si-NCAPD3 transfection.CONCLUSION NCAPD2/3 is highly expressed in the intestinal mucosa of patients with active UC.Overexpression of NCAPD2/3 promotes the release of pro-inflammatory cytokines by modulating the IKK/NF-κB signaling pathway.
文摘Aim Magnesium lithospermate B (MLB) is the most abundant hydrophilic active component of Salvia rniltiorrhiza Radix, a traditional Chinese herbal medicine mainly used to treat cardiovascular diseases. Studies have shown that endothelial activation contributes to the pathophysiology of cardiovascular diseases such as atherosclero- sis, diabetic vasculopathy, heart failure and hypertension. In the present study, the effects of MLB on endothelial activation were investigated. Lipopolysaccharide (LPS) 1 mg L^-1 was employed to induce endothelial activation, which was determined by relative gene expression and endothelial adhesion assay. Results showed that pretreatment with MLB attenuated LPS-induced ICAM1, VCAM1 and TNF-α upregulation in human dermal microvascular endo- thelial cells (HMEC-1) in dose-dependent manner, which contributed to the reduction of THP-1 adhesion to HMEC-1. Furthermore, it was revealed that 100 μmol · L^-1 MLB significantly decreased the nuclear translocation of NF-KB p65, a critical transcription factor in LPS-indueed inflammatory response, through the inhibition of IKBμ degradation. Besides, the transcriptional activity of NF-KB p65 was also inhibited by the pretreatment of MLB. Mo- reover, MLB pretreatment considerably inhibited LPS-induced p38 phosphorylation, which at least partly contribu- ted to the reduction of ICAM1 expression. In conclusion, these findings suggest that MLB inhibits LPS-induced nu- clear translocation and transcripitional activity of NF-KB, thus attenuates the increased expression of adhesion mole- cules and inflammatory factors, protects endothelial cells from LPS-induced activation.
基金The project supported by National Natural Science Foundation of China(NSFC 21476054)the Natural Science Foundation of Heilongjiang Province(B201407)
文摘OBJECTIVE The greatest challenge in chemotherapy of ischemic stroke is the construction a suitable delivery system to overcome the poor physicochemical properties of drug and its low permeability across the blood brain barrier(BBB).METHODS In the present study,dendrimer,polyamidoamine(PAMAM),was synthesized as the nano-drug carriers.Angiopep-2,which has been proved excellent ability to cross the BBB,was exploited as the targeting ligand to conjugate PAMAM via bifunctional polyethylene glycol(PEG).Then scutellarin(STA)was encapsulated into the functionalized nanoparticles(NPs)to formulate Angiopep-2 modified STA-loaded PEG-PAMAM NPs.Ischemic stroke model was established to evaluate the treatment efficacy and protective mechanism of Angiopep-2-STA-PEG-PAMAM NPs.RESULTS The pharmacokinetics and biodistribu-tion demonstrated that Angiopep-2-STA-PEG-PAMAM NPs exhibited significantly higher plasma concentration from 1 h to 10 h after intravenous administration and improve accumulation in brain(4.7-fold)compared with STA solution.Moreover,prolonged elimination half-life(4.8-fold)and lower clearance(3.4-fold)were observed.The brain uptake study of 6-coumarin confirmed that Angiopep-2-PEG-PAMAM NPs possessed better brain targeting efficacy(3.2-fold)than PEG-PAMAM NPs.Angiopep-2-STA-PEG-PAMAM NPs obviously ameliorated infarct volume,neurological deficit,histopathological severity and neuronal apoptosis.In addition,Angiopep-2-STA-PEG-PAMAM NPs markedly inhibited the calcium content and the levels of IL-12p40,IL-13,IL-17 and IL-23.Furthermore,Angiopep-2-STA-PEG-PAMAM NPs significantly decreased the m RNA and protein expressions of HMGB1,TLR2,TLR4,TLR5,My D88,TRIF,TRAM,IRAK-4,TRAF6,IкBα,IKKβand NF-кBp65.CONCLUSION The results suggested that Angiopep-2modified scutellarin-loaded PEG-PAMAM nanocarriers possessed remarkable neuroprotective effects on ischemic stroke through modulation of inflammatory cascades and HMGB1/TLRs/MyD 88-induced NF-κB activation pathways.
基金supported by a postdoctoral trainee fellowship from the Frenchman's Creek Women for Cancer Research,a cancer research fellowship from UICC(ACS-10-003)the Natural Science Foundation of China(81974469 and 81672635)the Postgraduate Independent Exploration and Innovation Project of Central South University of China(2019zzts899)。
文摘Endocrine therapy that blocks estrogen signaling is the most effective treatment for patients with estrogen receptor positive(ER+)breast cancer.However,the efficacy of agents such as tamoxifen(Tam)is often compromised by the development of resistance.Here we report that cytokines-activated nuclear IKKαconfers Tam resistance to ER+breast cancer by inducing the expression of FAT10,and that the expression of FAT10 and nuclear IKKαin primary ER+human breast cancer was correlated with lymphotoxinβ(LTB)expression and significantly associated with relapse and metastasis in patients treated with adjuvant mono-Tam.IKKαactivation or enforced FAT10 expression promotes Tam-resistance while loss of IKKαor FAT10 augments Tam sensitivity.The induction of FAT10 by IKKαis mediated by the transcription factor Pax5,and coordinated via an IKKα-p53-miR-23a circuit in which activation of IKKαattenuates p53-directed repression of FAT10.Thus,our findings establish IKKα-to-FAT10 pathway as a new therapeutic target for the treatment of Tam-resistant ER+breast cancer.
基金supported by a grant from the Key Projects in the National Science & Technology Pillar Program during the twelfth Five-Year Plan Period of China (2012ZX10001006-002)grants from the International Science & Technology Cooperation Program of China (2011DFA31030)Deutsche Forschungsgemeinschaft (SFB/Transregio TRR60)and Key Laboratory on Emerging Infectious Diseases and Biosafety in Wuhan
文摘Tripartite motif containing 22 (TRIM22), a member of the TRIM/RBCC family, has been reported to activate the nuclear factor-kappa B (NF-kB) pathway in unstimulated macrophage cell lines, but the detailed mechanisms governing this activation remains unclear. We investigated this mechanism in HEK293T cells. We found that overexpression of TRIM22 could activate the NF-kB pathway and conversely, could inhibit the tumor necrosis factor receptor-associated factor 6 (TRAF6)-stimulated NF-kB pathway in HEK293T cells. Further experiments showed that TRIM22 could decrease the self-ubiquitination of TRAF6, and interact with and degrade transforming growth factor-13 activated kinase 1 binding protein 2 (TAB2), and that these effects could be partially rescued by a TRIM22 RING domain deletion mutant. Collectively, our data indicate that overexpression of TRIM22 may negatively regulate the TRAF6-stimulated NF-rd3 pathway by interacting with and degrading TAB2.
文摘Aim Ginseng is the dried root of Panax ginseng C. A. Mayer. Since ancient times, ginseng has been used as one kind of treatment drug or tonic in China and even other eastern countries like Korea and Japan. Phar- macological active chemical ingredients and its extract of ginseng are a mixture of triterpenoid saponins, collectively called ginsenosides. Among them, ginsenoside Rgl is the most pharmacological active one. Based on prior experi- mental results and the understanding of alcoholic hepatitis, the major aim of this study is to investigate whether Rgl is beneficial in a rodent model mimic alcoholic hepatic injury associated with binge drinking and explore the under- lying possible mechanisms. Methods C57BL/6 mice were given oral consumption of 6 g · kg^-1 alcohol 1 h after treated with Rgl ( 10, 20 and 40 mg · kg^-1) or dexamethasone ( 1 mg · kg^-1) for 9 consecutive days. Biochemi- cal analyses were performed and liver fragments were processed for microscopy, immunohistochemistry and western blot analysis. Results According to our data, Rgl treatment significantly reversed the high mortality rate induced by alcohol consumption and also alleviated liver impairment as evidenced by the decrease of serum parameters. Meanwhile, histological and ultrastructural analysis of alcoholic groups showed hepatocellular impairment but re- stored in Rgl-treated groups. Overproductive inflammatory cytokines were also suppressed by Rgl in alcohol-intoxi- cated mouse livers. In addition, changes of GR related NF-KB pathway, including phospho-IKB-ot, were also mod- ulated to normal levels. Conclusion This study demonstrates that Rgl might promote GR mediating the repression of NF-KB and inhibit the inflammatory reactions in alcoholic hepatitis.
文摘The nuclear factor-KB (NF-KB) transcription factors control many physiological processes including in- flammation, immunity, apoptosis, and angiogenesis. In our search for NF-KB inhibitors from natural resources, we identified 4',6-dihydroxy-4-methoxyisoaurone (ISOA) as an inhibitor of NF-KB activation from the seeds of Tricho- santhes kirilowii. However, the mechanism by which ISOA inhibits NF-KB activation is not fully understood. In the present study, we demonstrated the effect of ISOA on NF-KB activation in TNF-α-stimulated HeLa cells. This com- pound suppressed NF-KB activation through the inhibition of IKB kinase (IKK) activation. ISOA also has an influ- ence on upstream signaling of IKK through the inhibition of expression of adaptor proteins, TNF receptor-associated factor 2 (TRAF2) and receptor interacting protein 1 (RIP1). Consequently, ISOA blocked the phosphorylation and degradation of the inhibitor of NF-KB alpha (IKBα) , and subsequent phosphorylation and nuclear translocation of p65. The suppression of NF-KB activation by ISOA led to the down-regulation of target genes involved in inflam- mation, proliferation, angiogenesis and invasion, as well as potentiation of TNF-α-induced apoptosis at least in part through activation of caspase-8. Taken together, this study extends our understanding on the mechanisms underly- ing the anti-inflammatory and anti-cancer activities of ISOA. Our findings provide new insight into the molecular mechanisms and a potential application of ISOA for inflammatory diseases as well as certain cancers associated with abnormal NF-KB activation.
基金supported by grants from the Department of Science and Technology of Sichuan Province,China(No.23ZDYF2212,23ZDYF2098)the Foundation for Sichuan Provincial People's Hospital(Sichuan,China)(No.2022QN06)Medico-Engineering Cooperation Funds from the University of Electronic Science and Technology of China(No.ZYGX2021YGLH209)and 2022 Tianfu Qingcheng Project,China.
文摘Glioma is a common tumor originating in the brain that has a high mortality rate.Temozolomide(TMZ)is the first-line treatment for high-grade gliomas.However,a large pro-portion of gliomas are resistant to TMZ,posing a great challenge to their treatment.In the study,the specific functions and mechanism(s)by which cortistatin(CORT)regulates TMZ resis-tance and glioma progression were evaluated.The decreased expression of CoRT was detected in glioma tissues,and highly expressed CORT was associated with a better survival rate in pa-tients with glioma.CORT overexpression notably decreased the capacity of glioma cells to pro-liferate and migrate in vitro and to form tumors in vivo.CORT overexpression also markedly suppressed the viability and enhanced the apoptosis of TMZ-resistant U251 cells by regulating MGMT,p21,and Puma expression.Importantly,CORT overexpression reduced the resistance of gliomas to TMZ in vivo.CORT expression Was negatively correlated with MGMT expression in both glioma tissues and cells,and it was found that CORT inhibited NF-kB pathway activation in glioma cells,thereby inhibiting MGMT expression.In conclusion,CORT regulates glioma cell growth,migration,apoptosis,and TMZ resistance by weakening the activity of NF-kB/p65 and thereby regulating MGMT expression.The CORT/NF-kB/MGMT axis might be regarded as a molecular mechanism contributing to the resistance of glioma to TMZ.Our data also suggest that CORT regulates the viability and metastatic potential of glioma cells,independent of its effects on TMZ resistance,providing evidence of novel therapeutic targets for glioma that should be evaluated infurther studies.
基金supported by grants from National Sciences Foundation of China(81773718,81630097,and 81773589)The National Key Research and Development Program of China(Grant No.SQ2018YFA090025-04)+3 种基金CAMS Innovation Fund for Medical Sciences(No.2016-I2M-3e011,China)The Drug Innovation Major Project(2018ZX09711001-003-020,2018ZX09711001-003-005,and 2018ZX09711001-008-005,China)CAMS The Fundamental Research Funds for the Central Universities(2018RC350002,China)CAMS&PUMC Innovation Fund for Graduate(No.2019-1007-23,China)
文摘Parkinson’s disease(PD)is the second most common neurodegenerative disease,but none of the current treatments for PD can halt the progress of the disease due to the limited understanding of the pathogenesis.In PD development,the communication between the brain and the gastrointestinal system influenced by gut microbiota is known as microbiota-gut-brain axis.However,the explicit mechanisms of microbiota dysbiosis in PD development have not been well elucidated yet.FLZ,a novel squamosamide derivative,has been proved to be effective in many PD models and is undergoing the phase I clinical trial to treat PD in China.Moreover,our previous pharmacokinetic study revealed that gut microbiota could regulate the absorption of FLZ in vivo.The aims of our study were to assess the protective effects of FLZ treatment on PD and to further explore the underlying microbiota-related mechanisms of PD by using FLZ as a tool.In the current study,chronic oral administration of rotenone was utilized to induce a mouse model to mimic the pathological process of PD.Here we revealed that FLZ treatment alleviated gastrointestinal dysfunctions,motor symptoms,and dopaminergic neuron death in rotenone-challenged mice.16 S rRNA sequencing found that PD-related microbiota alterations induced by rotenone were reversed by FLZ treatment.Remarkably,FLZ administration attenuated intestinal inflammation and gut barrier destruction,which subsequently inhibited systemic inflammation.Eventually,FLZ treatment restored blood-brain barrier structure and suppressed neuroinflammation by inhibiting the activation of astrocytes and microglia in the substantia nigra(SN).Further mechanistic research demonstrated that FLZ treatment suppressed the TLR4/MyD88/NF-κB pathway both in the SN and colon.Collectively,FLZ treatment ameliorates microbiota dysbiosis to protect the PD model via inhibiting TLR4 pathway,which contributes to one of the underlying mechanisms beneath its neuroprotective effects.Our research also supports the importance of microbiota-gut-brain axis in PD pathogenesis,suggesting its potential role as a novel therapeutic target for PD treatment.
基金This project was supported by grants from the National Key Research and Development Program of China(No.2016YFA0101100)National Natural Science Foundation of China(No.81700339 and No.31330029)Scientific Research Training Program for Young Talents sponsored by Union Hospital,Tongji Medical College,Huazhong University of Science and Technology。
文摘Summary:Interleukin 17A(IL 17A)is reported to be involved in many inflammatory processes,but its role in aortic valve diseases remains unknown.We examined the role of IL17A based on an ApoE^-/-mouse model with strategies as fed with high-fat diet or treated with ILI7A monoclonal antibody(mAb).12 weeks of high-fat diet feeding can elevate cytokines secretion,inflammatory cells infiltration and myofibroblastic transition of valvular interstitial cells(VICs)in aortic valve.Moreover,diet-induction accelerated interleukin 17 receptor A(IL17RA)activation in VICs.In an IL17A inhibition model,the treatment group was intra-peritoneally injected with anti-IL17A mAb while controls received irrelevant antibody.Functional blockade of IL17A markedly reduced cellular infiltration and transition in aortic valve.To investigate potential mechanisms,NF-kB was co-stained in IL17RA^+VICs and IL17RA macrophages,and further confirmed by Western blotting in VICs.High-fat diet could activate NF-kB nuclear translocation in IL17RA^+VICs and IL17RA^+macrophages and this process was depressed after IL17A mAb-treatment.In conclusion,high-fat diet can lead to IL17A upregulation,VICs myofibroblastic transition and inflammatory cells infiltration in the aortic value of ApoE^-/-mice.Blocking IL17A with IL17A mAb can alleviate aortic valve inflammatory states.
文摘Aim YiQiFuMai Powder Injection is a well-known traditional Chinese medicine formula that has been used extensively in clinical treatment of cardio-cerebral ischemic diseases in China. However, the mechanisms under-lying its clinical efficacy remain unknown. In this study, a network pharmacology approach was employed to identify the YiQiFuMai Powder Injection's potential pathways and targets against cardio-cerebral ischemia. The target-path- way interaction network clustered the signaling pathways based on high degree nodes of the drug-target network. The potential protein targets presented in the highly scored clustered pathways were the key network hubs and concentrated on one or limited functional signaling pathways amenable to experimental verification. Twelve main functional annota- tion clusters and main signaling pathways for YiQiFuMai Powder Injection were established by Biocarta analysis, in- eluding the NF-KB signaling pathway, the MAPKinase signaling pathway and the mTOR-signaling pathway and so on. YiQiFuMai Powder Injection is hypothesized to target multiple proteins with a high degree and betweenness of net- work. In addition, the most related pathways were also confirmed in tumor necrosis factor-alpha (TNF-oL) induced human vascular endothelial cell line EA. hy926 by Western blot. This study elucidates the systematic network and pathway analysis of multi-targets in YiQiFuMai Powder Injection. The results provide the possible mechanisms for its mode of action against cardio-cerebral ischemic diseases and may also reveal new clues for its potential application in the inflammatory diseases or tumors.
基金Supported by Grants from the National Natural Science Foundation of China(No.81072879,No.81202754)National Basic Research Program of China(973 program,No.2015CB554500)+1 种基金Project of Shanghai Municipal Commission of Health and Family Planning(No.20144Y0153)Special Scientific Research Fund for Election and Cultivation of the Elite in College and University(No.szy10071)
文摘OBJECTIVE: To observe the effect of stimulating Qihai(CV 6) and bilateral Tianshu(ST 25) with herb-partitioned moxibustion(HPM) in rats with Crohn's disease(CD), and to investigate the possible anti-inflammatory mechanism of HPM.METHODS: Forty rats were randomly divided into four groups(n = 10 rats per group): normal control(NC), model control(MC), mesalamine(MES), and HPM. The CD rat model was established in the MC,MES, and HPM groups by administering a mixture of trinitrobenzenesulfonic acid and alcohol via enema. The HPM group received HPM on Qihai(CV 6)and bilateral Tianshu(ST 25), while the MES group received intragastric mesalamine. Colonic histomorphological scores, and serum concentrations of tumor necrosis factor α(TNF-α) and interleukin 1β(IL-1β) were assessed to evaluate the effects of HPM on colonic reparation and anti-inflammation.The expressions of Toll-like receptor 4(TLR-4), nuclear factor κB inhibitor α(IκB-α), IκB kinase α/β(IKKα/β), and NF-κB p65 were further analyzed to investigate the regulatory effects of the interventions on the TLR4/NF-κB pathway.RESULTS: CD rats showed inflammatory colonic damage and increased serum concentrations of TNF-α and IL-1β. The expressions of TLR4, IKKα/β,and NF-κB p65 in the colons of CD rats were significantly increased compared with the NC group,while the expression of IκBα(a key negative regulator of NF-κB p65) was decreased. HPM significantly mitigated colonic damage and reduced the serum concentrations of TNF-α and IL-1β. HPM downregulated the expressions of TLR4, IKKα/β, and NF-κB p65 in the colon, and upregulated the expression of IκBα. The effects of HPM in CD rats were similar to those of mesalamine.CONCLUSION: HPM alleviates colonic inflammation in CD rats. This may be achieved through regulation of TLR4, which induces NF-κB signal transduction.
基金Fundamental Research Funds for the Central Universities(20720200104)to LXthe Ministry of Science and Technology of China(2020YFA0112300 and 2020YFA0803600)+3 种基金the National Natural Science Foundation of China(82125028,U22A20320,91953114,31871319,81761128015,and 81861130370)the Natural Science Foundation of Fujian Province of China(2020J02004)the Fundamental Research Funds for the Central University(20720190145 and 20720220003)to WLthe China Postdoctoral Science Foundation(2022M720119)to ZZZ.Part of Fig.6 was drawnbyusingFigdraw.
文摘Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)-induced cytokine storm is closely associated with coronavirus disease 2019(COVID-19)severity and lethality.However,drugs that are effective against inflammation to treat lethal COVID-19 are still urgently needed.Here,we constructed a SARS-CoV-2 spike protein-specific CAR,and human T cells infected with this CAR(SARS-CoV-2-S CAR-T)and stimulated with spike protein mimicked the T-cell responses seen in COVID-19 patients,causing cytokine storm and displaying a distinct memory,exhausted,and regulatory T-cell phenotype.THP1 remarkably augmented cytokine release in SARS-CoV-2-S CAR-T cells when they were in coculture.Based on this"two-cell"(CAR-T and THP1 cells)model,we screened an FDA-approved drug library and found that felodipine,fasudil,imatinib,and caspofungin were effective in suppressing the release of cytokines,which was likely due to their ability to suppress the NF-kB pathway in vitro.Felodipine,fasudi,imatinib,and caspofungin were further demonstrated,although to different extents,to attenuate lethal inflammation,ameliorate severe pneumonia,and prevent mortality in a SARS-CoV-2-infected Syrian hamster model,which were also linked to their suppressive role in inflammation.In summary,we established a SARS-CoV-2-specific CAR-T-cell model that can be utilized as a tool for anti-inflammatory drug screening in a fast and high-throughput manner.The drugs identified herein have great potential for early treatment to prevent COVID-19 patients from cytokine storm-induced lethality in the clinic because they are safe,inexpensive,and easily accessible for immediateuseinmostcountries.
文摘Using forward and reverse genetics and global gene expression analyses, we explored the crosstalk between the IKB kinase β (IKKβ) and the transforming growth factor β (TGFβ) signaling pathways. We show that in vitro ablation of Ikkβ in fibroblasts led to progressive ROS accumulation and TGFβ activation, and ultimately accelerated cell migration, fibroblast-myofibroblast transformation and senescence. Mechanistically, the basal IKKβ activity was required for anti-oxidant gene expression and redox homeostasis. Lacking this activity, IKKβ-null cells showed ROS accumulation and activation of stress-sensitive transcription factor AP-1/c- Jun. AP-1/c-Jun activation led to up-regulation of the Tgfβ2 promoter, which in turn further potentiated intracellular ROS through the induction of NADPH oxidase (NOX). These data suggest that by blocking the autocrine amplification of a ROS-TGFβ loop IKKβ plays a crucial role in the prevention of fibroblast-myofibroblast transformation and senescence.
基金This work was funded by the National Key Research and Development Program of China(Grant 2017YFD0501404)the National Natural Science Foundation of China(Grant 31872521)+1 种基金the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(Grant 2019BT02N054)the Basic Research&Applying Basic Research Foundation of Guangdong Province(Grant 2019B1515210007)。
文摘Porcine reproductive and respiratory syndrome virus(PRRSV) continues to cause significant economic loss worldwide and remains a serious threat to the pork industry. Currently, vaccination strategies provide limited protection against PRRSV infection, and consequently, new antiviral strategies are urgently required. Andrographolide(Andro) and its derivative potassium dehydrographolide succinate(PDS) have been used clinically in China and other Asian countries as therapies for inflammation-related diseases, including bacterial and viral infections, for decades. Here, we demonstrate that Andro and PDS exhibit robust activity against PRRSV replication in Marc-145 cells and primary porcine alveolar macrophages(PAMs). The two compounds exhibited broad-spectrum inhibitory activities in vitro against clinically circulating type 2 PRRSV GD-HD, XH-GD, and NADC30-like HNhx strains in China. The EC_(50)values of Andro against three tested PRRSV strain infections in Marc-145 cells ranged from 11.7 to 15.3 lmol/L, with selectivity indexes ranging from 8.3 to10.8, while the EC_(50)values of PDS ranged from 57.1 to 85.4 lmol/L, with selectivity indexes ranging from 344 to 515.Mechanistically, the anti-PRRSV activity of the two compounds is closely associated with their potent suppression on NFj B activation and enhanced oxidative stress induced by PRRSV infection. Further mechanistic investigations revealed that PDS, but not Andro, is able to directly interact with PRRSV particles. Taken together, our findings suggest that Andro and PDS are promising PRRSV inhibitors in vitro and deserves further in vivo studies in swine.