Differential contributions of the glycosylphosphatidylinositol (GPI)-anchor and GPI-anchored proteins (GPI-AP) to signalling remain poorly understood. Here we show that GPI-AP deficient murine clones produce on averag...Differential contributions of the glycosylphosphatidylinositol (GPI)-anchor and GPI-anchored proteins (GPI-AP) to signalling remain poorly understood. Here we show that GPI-AP deficient murine clones produce on average 18 and 181-fold more IL-2 mRNA and protein, respectively, upon T cell receptor (TCR) stimulation, in a cell-intrinsic fashion. This phenotype is formally attributed to a mutation within the transferase complex that predicates the initial step in GPI-anchor biosynthesis. Conditional disruption of the transferase complex enabled the generation of primary GPI-AP deficient CD4<sup>+</sup> T cells, which produce on average 10- and 23-fold more IL-2 mRNA and protein, respectively, upon TCR stimulation. Conditional disruption of the transamidase complex yields GPI-sufficient, GPI-AP deficient primary CD4<sup>+</sup> T cells. TCR stimulation of these cells yields levels of IL-2 mRNA and protein ranging from 1 - 3 and 3-fold, respectively, of controls. These results provide the first evidence of a profound impact of GPI in the regulation of TCR signalling.展开更多
Objective:To investigate the regulatory effect of aqueous extract of leaves of Ocimum sanctum on IL-2 cytokine production in vivo and in vitro,and the effect of leaves extract on general blood picture including T&...Objective:To investigate the regulatory effect of aqueous extract of leaves of Ocimum sanctum on IL-2 cytokine production in vivo and in vitro,and the effect of leaves extract on general blood picture including T& B lymphocytes.Methods:For in vivo studies albino Wistar rats were treated with aqueous crude leaves extract of Ocimum sanctum for 20 consecutive days.Spleen cells were harvested and assayed for IL-2 production by using sandwich enzyme-linked immunosorbent assay(ELISA) and mRNA expression methods.For in vitro study aqueous Ocimum sanctum leaves extract= in different concentrations(25-500μ/mL) was added into culture plates containing ConA stimulated splenocytes.To study the overall effect on blood picture,density gradient purified lymphocytes analysis and conventional methodology for total and differential leukocyte count and hemoglobin level were also done.Results:It indicated that the rats treated with Ocimum sanctum leaves extract had significantly enhanced(P【0.001) ability of spleen cells to secrete IL-2.Investigation in vitro also showed regulation of IL-2 production.Blood study exhibited leucocytosis and augmentation of T& B lymphocytes by 25%approximately.4-5%increase in Hemoglobin value was also noticed.Conclusion:Aqueous Ocimum sanctum leaves extract may have stimulatory effect on T & B lymphocytes particularly on Th 1 subset of lymphocytes as shown by enhancement in IL-2 production.展开更多
It is observed that Ge-132 can increase human interleukin-2(IL-2)productionby the peripheral blood mononuclear cells(PBMC)under PHA induction in vitro.TraceGe-132(10<sup>-3</sup>-1μg/ml)can obviously ...It is observed that Ge-132 can increase human interleukin-2(IL-2)productionby the peripheral blood mononuclear cells(PBMC)under PHA induction in vitro.TraceGe-132(10<sup>-3</sup>-1μg/ml)can obviously increase the IL-2 production;even utmost minimalGe-132 (10<sup>-4</sup>-10<sup>-1</sup>μg/ml)can promote the reactivity of lymphocyres to IL-2.The proba-ble anticancer mechanism of Ge-132 was discussed.展开更多
Soluble receptor for advanced glycation end products(sRAGE)acts as a decoy sequestering of RAGE ligands,thus preventing the activation of the ligand-RAGE axis linking human diseases.However,the molecular mechanisms un...Soluble receptor for advanced glycation end products(sRAGE)acts as a decoy sequestering of RAGE ligands,thus preventing the activation of the ligand-RAGE axis linking human diseases.However,the molecular mechanisms underlying sRAGE remain unclear.In this study,THP-1 monocytes were cultured in normal glucose(NG,5.5 mmol/L)and high glucose(HG,15 mmol/L)to investigate the effects of diabetesrelevant glucose concentrations on sRAGE and interleukin-1β(IL-1β)secretion.The modulatory effects of epigallocatechin gallate(EGCG)in response to HG challenge were also evaluated.HG enhanced intracellular reactive oxygen species(ROS)generation and RAGE expression.The secretion of sRAGE,including esRAGE and cRAGE,was reduced under HG conditions,together with the downregulation of a disintegrin and metallopeptidase 10(ADAM10)and nuclear factor erythroid 2-related factor 2(Nrf2)nuclear translocation.Mechanistically,the HG effects were counteracted by siRAGE and exacerbated by siNrf2.Chromatin immunoprecipitation results showed that Nrf2 binding to the ADAM10 promoter and HG interfered with this binding.Our data reinforce the notion that RAGE and Nrf2 might be sRAGE-regulating factors.Under HG conditions,the treatment of EGCG reduced ROS generation and RAGE activation.EGCG-stimulated cRAGE release was likely caused by the upregulation of the Nrf2-ADAM10 pathway.EGCG inhibited HG-mediated NLRP3 inflammasome activation at least partly by stimulating sRAGE,thereby reducing IL-1βrelease.展开更多
Background Chinese indigenous pigs are popular with consumers for their juiciness,flavour and meat quality,but they have lower meat production.Insulin-like growth factor 2(IGF2) is a maternally imprinted growth factor...Background Chinese indigenous pigs are popular with consumers for their juiciness,flavour and meat quality,but they have lower meat production.Insulin-like growth factor 2(IGF2) is a maternally imprinted growth factor that promotes skeletal muscle growth by regulating cell proliferation and differentiation.A single nucleotide polymorphism(SNP) within intron 3 of porcine IGF2 disrupts a binding site for the repressor,zinc finger BED-type containing 6(ZBED6),leading to up-regulation of IGF2 and causing major effects on muscle growth,heart size,and backfat thickness.This favorable mutation is common in Western commercial pig populations,but absent in most Chinese indigenous pig breeds.To improve meat production of Chinese indigenous pigs,we used cytosine base editor 3(CBE3)to introduce IGF2 intron3-C3071T mutation into porcine embryonic fibroblasts(PEFs) isolated from a male Liang Guang Small Spotted pig(LGSS),and single-cell clones harboring the desired mutation were selected for somatic cell nuclear transfer(SCNT) to generate the founder line of IGF2^(T/T) pigs.Results We found the heterozygous progeny IGF2^(C/T) pigs exhibited enhanced expression of IGF2,increased lean meat by 18%-36%,enlarged loin muscle area by 3%-17%,improved intramuscular fat(IMF) content by 18%-39%,marbling score by 0.75-1,meat color score by 0.53-1.25,and reduced backfat thickness by 5%-16%.The enhanced accumulation of intramuscular fat in IGF2^(C/T) pigs was identified to be regulated by the PI3K-AKT/AMPK pathway,which activated SREBP1 to promote adipogenesis.Conclusions We demonstrated the introduction of IGF2-intron3-C3071T in Chinese LGSS can improve both meat production and quality,and first identified the regulation of IMF deposition by IGF2 through SREBP1 via the PI3KAKT/AMPK signaling pathways.Our study provides a further understanding of the biological functions of IGF2and an example for improving porcine economic traits through precise base editing.展开更多
Energy supply dominated by fossil energy has been and remains the main cause of carbon dioxide emissions,the major greenhouse gas leading to the current grave climate change challenges.Many technical pathways have bee...Energy supply dominated by fossil energy has been and remains the main cause of carbon dioxide emissions,the major greenhouse gas leading to the current grave climate change challenges.Many technical pathways have been proposed to address the challenges.Carbon capture and utilization(CCU) represents one of the approaches and thermochemical CO_(2) splitting driven by thermal energy is a subset of the CCU,which converts the captured CO_(2) into CO and makes it possible to achieve closed-loop carbon recirculation.Redox-active catalysts are among the most critical components of the thermochemical splitting cycles and perovskites are regarded as the most promising catalysts.Here we review the latest advancements in thermochemical cycles based on perovskites,covering thermodynamic principles,material modifications,reaction kinetics,oxygen pressure control,circular strategies,and demonstrations to provide a comprehensive overview of the topical area.Thermochemical cycles based on such materials require the consideration of trade-off between cost and efficiency,which is related to actual material used,operation mode,oxygen removal,and heat recovery.Lots of efforts have been made towards improving reaction rates,conversion efficiency and cycling stability,materials related research has been lacking-a key aspect affecting the performance across all above aspects.Double perovskites and composite perovskites arise recently as a potentially promising addition to material candidates.For such materials,more effective oxygen removal would be needed to enhance the overall efficiency,for which thermochemical or electrochemical oxygen pumps could contribute to efficient oxygen removal as well as serve as means for inert gas regeneration.The integration of thermochemical CO_(2) splitting process with downstream fuel production and other processes could reduce costs and increase efficiency of the technology.This represents one of the directions for the future research.展开更多
In this study,Ni_(2)P/CdS composites were constructed by depositing non-precious metal co-catalyst Ni_(2)P on a one-dimensional network of CdS using a simple in-situ photodeposition method.The prepared photocatalysts ...In this study,Ni_(2)P/CdS composites were constructed by depositing non-precious metal co-catalyst Ni_(2)P on a one-dimensional network of CdS using a simple in-situ photodeposition method.The prepared photocatalysts promoted the decomposition of ethanol into high-value-added products while generating hydrogen.The composite photoanodes loaded with the Ni_(2)P co-catalysts showed significantly higher ethanol conversion and hydrogen production in the visible light region,which was almost three times higher than that of pure CdS.The main products of photocatalytic ethanol production are acetaldehyde(AA)and 2,3-butanediol(2,3-BDA).Compared with CdS,the selectivity of the composite photocatalysts for converting ethanol to acetaldehyde was significantly improved(62% to 78%).Characterization of the prepared photocatalysts confirmed that the loading of Ni_(2)P co-catalysts on CdS not only broadened the optical region of the catalysts for trapping light but also effectively promoted the separation and transfer of charge carriers,which significantly improved the photocatalytic efficiency of ethanol conversion and hydrogen production in the catalysts.It has been proven through Electron Paramagnetic Resonance testing that loading a Ni_(2)P co-catalyst on CdS is beneficial for the adsorption of hydroxyethyl radicals(*CH(OH)CH_(3)),thereby further improving the selectivity of acetaldehyde.This study plays an important role in the rational design of composite catalyst structures and the introduction of co-catalysts to improve catalyst performance,promote green chemistry,advocate a low-carbon society,and promote sustainable development.展开更多
Carbon emission reduction and clean energy development are urgent demands for mankind in the coming decades.Exploring an efficient CO_(2) storage method can significantly reduce CO_(2) emissions in the short term.In t...Carbon emission reduction and clean energy development are urgent demands for mankind in the coming decades.Exploring an efficient CO_(2) storage method can significantly reduce CO_(2) emissions in the short term.In this study,we attempted to construct sediment samples with different residual CH_(4) hydrate amounts and reservoir conditions,and then investigate the potentials of both CO_(2) storage and enhanced CH_(4) recovery in depleted gas hydrate deposits in the permafrost and ocean zones,respectively.The results demonstrate that CO_(2) hydrate formation rate can be significantly improved due to the presence of residual hydrate seeds;However,excessive residual hydrates in turn lead to the decrease in CO_(2) storage efficiency.Affected by the T-P conditions of the reservoir,the storage amount of liquid CO_(2) can reach 8 times that of gaseous CO_(2),and CO_(2) stored in hydrate form reaches 2-4 times.Additionally,we noticed two other advantages of this method.One is that CO_(2) injection can enhance CH_(4) recovery rate and increases CH_(4) recovery by 10%-20%.The second is that hydrate saturation in the reservoir can be restored to 20%-40%,which means that the solid volume of the reservoir avoids serious shrinkage.Obviously,this is crucial for protecting the goaf stability.In summary,this approach is greatly promising for high-efficient CO_(2) storage and safe exploitation of gas hydrate.展开更多
Hydrogen peroxide(H_(2)O_(2))has gained widespread attention as a versatile oxidant and a mild disin-fectant.Here,an electrostatic self-assembly method is applied to couple ZnSe quantum dots(QDs)with a flower-like cov...Hydrogen peroxide(H_(2)O_(2))has gained widespread attention as a versatile oxidant and a mild disin-fectant.Here,an electrostatic self-assembly method is applied to couple ZnSe quantum dots(QDs)with a flower-like covalent organic framework(COF)to form a step-scheme(S-scheme)photocata-lyst for H_(2)O_(2)production.The as-prepared S-scheme photocatalyst exhibits a broad light absorption range with an edge at 810 nm owing to the synergistic effect between the ZnSe QDs and COF.The S-scheme charge-carrier transfer mechanism is validated by performing Fermi level calculations and in-situ X-ray photoelectron and femtosecond transient absorption spectroscopies.Photolumi-nescence,time-resolved photoluminescence,photocurrent response,electrochemical impedance spectroscopy,and electron paramagnetic resonance results show that the S-scheme heterojunction not only promotes charge carrier separation but also boosts the redox ability,resulting in enhanced photocatalytic performance.Remarkably,a 10%-ZnSe QD/COF has excellent photocatalytic H_(2)O_(2)-production activity,and the optimal S-scheme composite with ethanol as the hole scavenger yields a H_(2)O_(2)-production rate of 1895 mol g^(-1)h^(-1).This study presents an example of a high-performance organic/inorganic S-scheme photocatalyst for H_(2)O_(2)production.展开更多
Designing a step-scheme(S-scheme)heterojunction photocatalyst with vacancy engineering is a reliable approach to achieve highly efficient photocatalytic H_(2)production activity.Herein,a hollow ZnO/ZnS S-scheme hetero...Designing a step-scheme(S-scheme)heterojunction photocatalyst with vacancy engineering is a reliable approach to achieve highly efficient photocatalytic H_(2)production activity.Herein,a hollow ZnO/ZnS S-scheme heterojunction with O and Zn vacancies(VO,Zn-ZnO/ZnS)is rationally constructed via ion-exchange and calcination treatments.In such a photocatalytic system,the hollow structure combined with the introduction of dual vacancies endows the adequate light absorption.Moreover,the O and Zn vacancies serve as the trapping sites for photo-induced electrons and holes,respectively,which are beneficial for promoting the photo-induced carrier separation.Meanwhile,the S-scheme charge transfer mechanism can not only improve the separation and transfer efficiencies of photo-induced carrier but also retain the strong redox capacity.As expected,the optimized VO,Zn-ZnO/ZnS heterojunction exhibits a superior photocatalytic H_(2) production rate of 160.91 mmol g^(-1)h^(-1),approximately 643.6 times and 214.5 times with respect to that obtained on pure ZnO and ZnS,respectively.Simultaneously,the experimental results and density functional theory calculations disclose that the photo-induced carrier transfer pathway follows the S-scheme heterojunction mechanism and the introduction of O and Zn vacancies reduces the surface reaction barrier.This work provides an innovative strategy of vacancy engineering in S-scheme heterojunction for solar-to-fuel energy conversion.展开更多
Recent studies have indicated that the injection of carbon dioxide(CO_(2))can lead to increased oil recovery in fractured shale reservoirs following natural depletion.Despite advancements in understanding mass exchang...Recent studies have indicated that the injection of carbon dioxide(CO_(2))can lead to increased oil recovery in fractured shale reservoirs following natural depletion.Despite advancements in understanding mass exchange processes in subsurface formations,there remains a knowledge gap concerning the disparities in these processes between the matrix and fractures at the pore scale in formations with varying permeability.This study aims to experimentally investigate the CO_(2) diffusion behaviors and in situ oil recovery through a CO_(2) huff‘n’puff process in the Jimsar shale oil reservoir.To achieve this,we designed three matrix-fracture models with different permeabilities(0.074 mD,0.170 mD,and 0.466 mD)and experimented at 30 MPa and 91℃.The oil concentration in both the matrix and fracture was monitored using a low-field nuclear magnetic resonance(LF-NMR)technique to quantify in situ oil recovery and elucidate mass-exchange behaviors.The results showed that after three cycles of CO_(2) huff‘n’puff,the total recovery degree increased from 30.28%to 34.95%as the matrix permeability of the core samples increased from 0.074 to 0.466 mD,indicating a positive correlation between CO_(2) extraction efficiency and matrix permeability.Under similar fracture conditions,the increase in matrix permeability further promoted CO_(2) extraction efficiency during CO_(2) huff‘n’puff.Specifically,the increase in matrix permeability of the core had the greatest effect on the extraction of the first-cycle injection in large pores,which increased from 16.42%to 36.64%.The findings from our research provide valuable insights into the CO_(2) huff‘n’puff effects in different pore sizes following fracturing under varying permeability conditions,shedding light on the mechanisms of CO_(2)-enhanced oil recovery in fractured shale oil reservoirs.展开更多
Ammonia plays a crucial role in contemporary society,impacting medicine,agriculture,and the chemical industry.The conventional industrial synthesis of NH_(3) through the Haber-Bosch technique,carried out under severe ...Ammonia plays a crucial role in contemporary society,impacting medicine,agriculture,and the chemical industry.The conventional industrial synthesis of NH_(3) through the Haber-Bosch technique,carried out under severe reaction conditions,leads to substantial energy consumption and environmental pollution.It is thus imperative for NH_(3) synthesis methods to be investigated under more favorable conditions.Synthesis of ammonia by electrocatalysis can effectively reduce the environmental damage and other urgent problems,which is a promising solution.Metal-nitrogen series batteries(M-N batteries),such as metal-nitrogen gas batteries,metal-nitrogen oxide batteries and metal-oxynitride batteries have been regarded recently as an exemplar of concurrent NH_(3) synthesis and energy production.Nonetheless,the large-scale application of these batteries is still limited by numerous challenges are currently existing in building high-efficiency M-N batteries,including poor Faradic efficiency and low NH_(3) yield.Therefore,a comprehensive overview of M-N batteries is offered,specifically focusing on advanced strategies for designing highly efficient cathode catalysts in anticipation of future developments.The metal anodes,cathodic electro-reduction reactions,and design principles are encompassed in the discussion,offering detailed insights to enhance understanding.Mechanisms,feasibility analyses,technoeconomic assessments,device combinations,and comparative evaluations are delved into in the review,contributing to a thorough comprehension of diverse systems and their application potential.Perspectives and opportunities for future research directions are also delineated.展开更多
The development of an efficient artificial H_(2)O_(2) photosynthesis system is a challenging work using H_(2)O and O_(2) as starting materials.Herein,3D In_(2.77)S_(4) nanoflower precursor was in-situ deposited on K^(...The development of an efficient artificial H_(2)O_(2) photosynthesis system is a challenging work using H_(2)O and O_(2) as starting materials.Herein,3D In_(2.77)S_(4) nanoflower precursor was in-situ deposited on K^(+)-doped g-C_(3)N_(4)(KCN)nanosheets using a solvothermal method,then In_(2.77)S_(4)/KCN(IS/KCN)het-erojunction with an intimate interface was obtained after a calcination process.The investigation shows that the photocatalytic H_(2)O_(2) production rate of 50IS/KCN can reach up to 1.36 mmol g^(-1)h^(-1)without any sacrificial reagents under visible light irradiation,which is 9.2 times and 4.1 times higher than that of KCN and In_(2.77)S_(4)/respectively.The enhanced activity of the above composite can be mainly attributed to the S-scheme charge transfer route between KCN and In_(2.77)S_(4) according to density functional theory calculations,electron paramagnetic resonance and free radical capture tests,leading to an expanded light response range and rapid charge separation at their interface,as well as preserving the active electrons and holes for H_(2)O_(2) production.Besides,the unique 3D nanostructure and surface hydrophobicity of IS/KCN facilitate the diffusion and transportation of O_(2) around the active centers,the energy barriers of O_(2) protonation and H_(2)O_(2) desorption steps are ef-fectively reduced over the composite.In addition,this system also exhibits excellent light harvesting ability and stability.This work provides a potential strategy to explore a sustainable H_(2)O_(2) photo-synthesis pathway through the design of heterojunctions with intimate interfaces and desired reac-tion thermodynamics and kinetics.展开更多
IL-2 production and IL-2 receptor (Tac antigen) of the peripheral blood mononuclear cells in 30 patients with aplastic anemic (AA) were studied. We found that mononuclear cells from patients produce spontaneously IL-2...IL-2 production and IL-2 receptor (Tac antigen) of the peripheral blood mononuclear cells in 30 patients with aplastic anemic (AA) were studied. We found that mononuclear cells from patients produce spontaneously IL-2 in the absence of exogenous lee-tin stimulation, the proportion of Tac+ cells in mononuclear cells increased. The release of IL-2 and or Tac antigen expression were elevated in almost every patient with AA. The plasma from patients stimulate mitogen-induced blastogenesis and Tac antigen expression of normal human lymphocytes. Immunological 1 abnormalities of patients with AA possibly might represents secondary response to bone marrow depression.展开更多
Periodontal disease is the leading cause of tooth loss,which is also a high-risk factor for other diseases including oral cancer and cardiovascular disease.Periodontitis is one of the most common type of periodontal d...Periodontal disease is the leading cause of tooth loss,which is also a high-risk factor for other diseases including oral cancer and cardiovascular disease.Periodontitis is one of the most common type of periodontal diseases.Interleukin-1β(IL-1β)plays a key role in the pathogenesis of periodontitis.However,the mechanism how IL-1βis produced during periodontitis is still unclear.In the present study,we found that humanβ-defensin 2(hBD2)enhances IL-1βproduction through an LPS-primed human acute monocytic leukemia(THP-1)macrophage model.Inhibition of P2X purinoceptor 7(P2X7)reduced hBD2-enhanced IL-1βproduction.Incubation of LPS-primed THP-1 macrophages with potassium chloride also suppressed hBD2-enhanced IL-1βproduction.Silence of inflammasome adaptor Nod-like receptor family pyrin domain containing 3(NLRP3)led to reduced hBD2-enhanced IL-1βproduction.Likewise,inhibition of caspase-1 also resulted in the decrease of IL-1β.Moreover,an ethidium bromide uptake test indicated that hBD2-activated caspase-1 mediated pyroptotic pore formation.Subsequent lactate dehydrogenase detection and flow cytometric analysis indicated that hBD2 also induced pyroptosis.In brief,these findings illustrated not only the mechanism of hBD2 in enhancing the inflammatory response,but also provided novel therapeutic targets for periodontitis.展开更多
文摘Differential contributions of the glycosylphosphatidylinositol (GPI)-anchor and GPI-anchored proteins (GPI-AP) to signalling remain poorly understood. Here we show that GPI-AP deficient murine clones produce on average 18 and 181-fold more IL-2 mRNA and protein, respectively, upon T cell receptor (TCR) stimulation, in a cell-intrinsic fashion. This phenotype is formally attributed to a mutation within the transferase complex that predicates the initial step in GPI-anchor biosynthesis. Conditional disruption of the transferase complex enabled the generation of primary GPI-AP deficient CD4<sup>+</sup> T cells, which produce on average 10- and 23-fold more IL-2 mRNA and protein, respectively, upon TCR stimulation. Conditional disruption of the transamidase complex yields GPI-sufficient, GPI-AP deficient primary CD4<sup>+</sup> T cells. TCR stimulation of these cells yields levels of IL-2 mRNA and protein ranging from 1 - 3 and 3-fold, respectively, of controls. These results provide the first evidence of a profound impact of GPI in the regulation of TCR signalling.
基金financially supported by Woman Scientist Scheme-A to the first author from the Department of Science and Technology,New Delhi
文摘Objective:To investigate the regulatory effect of aqueous extract of leaves of Ocimum sanctum on IL-2 cytokine production in vivo and in vitro,and the effect of leaves extract on general blood picture including T& B lymphocytes.Methods:For in vivo studies albino Wistar rats were treated with aqueous crude leaves extract of Ocimum sanctum for 20 consecutive days.Spleen cells were harvested and assayed for IL-2 production by using sandwich enzyme-linked immunosorbent assay(ELISA) and mRNA expression methods.For in vitro study aqueous Ocimum sanctum leaves extract= in different concentrations(25-500μ/mL) was added into culture plates containing ConA stimulated splenocytes.To study the overall effect on blood picture,density gradient purified lymphocytes analysis and conventional methodology for total and differential leukocyte count and hemoglobin level were also done.Results:It indicated that the rats treated with Ocimum sanctum leaves extract had significantly enhanced(P【0.001) ability of spleen cells to secrete IL-2.Investigation in vitro also showed regulation of IL-2 production.Blood study exhibited leucocytosis and augmentation of T& B lymphocytes by 25%approximately.4-5%increase in Hemoglobin value was also noticed.Conclusion:Aqueous Ocimum sanctum leaves extract may have stimulatory effect on T & B lymphocytes particularly on Th 1 subset of lymphocytes as shown by enhancement in IL-2 production.
文摘It is observed that Ge-132 can increase human interleukin-2(IL-2)productionby the peripheral blood mononuclear cells(PBMC)under PHA induction in vitro.TraceGe-132(10<sup>-3</sup>-1μg/ml)can obviously increase the IL-2 production;even utmost minimalGe-132 (10<sup>-4</sup>-10<sup>-1</sup>μg/ml)can promote the reactivity of lymphocyres to IL-2.The proba-ble anticancer mechanism of Ge-132 was discussed.
文摘Soluble receptor for advanced glycation end products(sRAGE)acts as a decoy sequestering of RAGE ligands,thus preventing the activation of the ligand-RAGE axis linking human diseases.However,the molecular mechanisms underlying sRAGE remain unclear.In this study,THP-1 monocytes were cultured in normal glucose(NG,5.5 mmol/L)and high glucose(HG,15 mmol/L)to investigate the effects of diabetesrelevant glucose concentrations on sRAGE and interleukin-1β(IL-1β)secretion.The modulatory effects of epigallocatechin gallate(EGCG)in response to HG challenge were also evaluated.HG enhanced intracellular reactive oxygen species(ROS)generation and RAGE expression.The secretion of sRAGE,including esRAGE and cRAGE,was reduced under HG conditions,together with the downregulation of a disintegrin and metallopeptidase 10(ADAM10)and nuclear factor erythroid 2-related factor 2(Nrf2)nuclear translocation.Mechanistically,the HG effects were counteracted by siRAGE and exacerbated by siNrf2.Chromatin immunoprecipitation results showed that Nrf2 binding to the ADAM10 promoter and HG interfered with this binding.Our data reinforce the notion that RAGE and Nrf2 might be sRAGE-regulating factors.Under HG conditions,the treatment of EGCG reduced ROS generation and RAGE activation.EGCG-stimulated cRAGE release was likely caused by the upregulation of the Nrf2-ADAM10 pathway.EGCG inhibited HG-mediated NLRP3 inflammasome activation at least partly by stimulating sRAGE,thereby reducing IL-1βrelease.
基金supported by the National Natural Science Foundation of China (3207269732030102)+2 种基金CARS-PIG-35R&D Programmes of Guangdong Province (2018B020203003)Laboratory of Lingnan Modern Agriculture Project (NZ2021006)。
文摘Background Chinese indigenous pigs are popular with consumers for their juiciness,flavour and meat quality,but they have lower meat production.Insulin-like growth factor 2(IGF2) is a maternally imprinted growth factor that promotes skeletal muscle growth by regulating cell proliferation and differentiation.A single nucleotide polymorphism(SNP) within intron 3 of porcine IGF2 disrupts a binding site for the repressor,zinc finger BED-type containing 6(ZBED6),leading to up-regulation of IGF2 and causing major effects on muscle growth,heart size,and backfat thickness.This favorable mutation is common in Western commercial pig populations,but absent in most Chinese indigenous pig breeds.To improve meat production of Chinese indigenous pigs,we used cytosine base editor 3(CBE3)to introduce IGF2 intron3-C3071T mutation into porcine embryonic fibroblasts(PEFs) isolated from a male Liang Guang Small Spotted pig(LGSS),and single-cell clones harboring the desired mutation were selected for somatic cell nuclear transfer(SCNT) to generate the founder line of IGF2^(T/T) pigs.Results We found the heterozygous progeny IGF2^(C/T) pigs exhibited enhanced expression of IGF2,increased lean meat by 18%-36%,enlarged loin muscle area by 3%-17%,improved intramuscular fat(IMF) content by 18%-39%,marbling score by 0.75-1,meat color score by 0.53-1.25,and reduced backfat thickness by 5%-16%.The enhanced accumulation of intramuscular fat in IGF2^(C/T) pigs was identified to be regulated by the PI3K-AKT/AMPK pathway,which activated SREBP1 to promote adipogenesis.Conclusions We demonstrated the introduction of IGF2-intron3-C3071T in Chinese LGSS can improve both meat production and quality,and first identified the regulation of IMF deposition by IGF2 through SREBP1 via the PI3KAKT/AMPK signaling pathways.Our study provides a further understanding of the biological functions of IGF2and an example for improving porcine economic traits through precise base editing.
文摘Energy supply dominated by fossil energy has been and remains the main cause of carbon dioxide emissions,the major greenhouse gas leading to the current grave climate change challenges.Many technical pathways have been proposed to address the challenges.Carbon capture and utilization(CCU) represents one of the approaches and thermochemical CO_(2) splitting driven by thermal energy is a subset of the CCU,which converts the captured CO_(2) into CO and makes it possible to achieve closed-loop carbon recirculation.Redox-active catalysts are among the most critical components of the thermochemical splitting cycles and perovskites are regarded as the most promising catalysts.Here we review the latest advancements in thermochemical cycles based on perovskites,covering thermodynamic principles,material modifications,reaction kinetics,oxygen pressure control,circular strategies,and demonstrations to provide a comprehensive overview of the topical area.Thermochemical cycles based on such materials require the consideration of trade-off between cost and efficiency,which is related to actual material used,operation mode,oxygen removal,and heat recovery.Lots of efforts have been made towards improving reaction rates,conversion efficiency and cycling stability,materials related research has been lacking-a key aspect affecting the performance across all above aspects.Double perovskites and composite perovskites arise recently as a potentially promising addition to material candidates.For such materials,more effective oxygen removal would be needed to enhance the overall efficiency,for which thermochemical or electrochemical oxygen pumps could contribute to efficient oxygen removal as well as serve as means for inert gas regeneration.The integration of thermochemical CO_(2) splitting process with downstream fuel production and other processes could reduce costs and increase efficiency of the technology.This represents one of the directions for the future research.
基金supported by the National Natural Science Foundation of China(22075197,22278290)the Shanxi Provincial Natural Science Foundation of China(202103021224079,201903D421081)the Research and Development Project of Key Core and Common Technology of Shanxi Province(20201102018)。
文摘In this study,Ni_(2)P/CdS composites were constructed by depositing non-precious metal co-catalyst Ni_(2)P on a one-dimensional network of CdS using a simple in-situ photodeposition method.The prepared photocatalysts promoted the decomposition of ethanol into high-value-added products while generating hydrogen.The composite photoanodes loaded with the Ni_(2)P co-catalysts showed significantly higher ethanol conversion and hydrogen production in the visible light region,which was almost three times higher than that of pure CdS.The main products of photocatalytic ethanol production are acetaldehyde(AA)and 2,3-butanediol(2,3-BDA).Compared with CdS,the selectivity of the composite photocatalysts for converting ethanol to acetaldehyde was significantly improved(62% to 78%).Characterization of the prepared photocatalysts confirmed that the loading of Ni_(2)P co-catalysts on CdS not only broadened the optical region of the catalysts for trapping light but also effectively promoted the separation and transfer of charge carriers,which significantly improved the photocatalytic efficiency of ethanol conversion and hydrogen production in the catalysts.It has been proven through Electron Paramagnetic Resonance testing that loading a Ni_(2)P co-catalyst on CdS is beneficial for the adsorption of hydroxyethyl radicals(*CH(OH)CH_(3)),thereby further improving the selectivity of acetaldehyde.This study plays an important role in the rational design of composite catalyst structures and the introduction of co-catalysts to improve catalyst performance,promote green chemistry,advocate a low-carbon society,and promote sustainable development.
基金financially supported by the National Natural Science Foundation of China,China(22378424,52004136,22127812,U20B6005)the Science Foundation of China University of Petroleum Beijing(2462023BJRC017)Hunan Provincial Department of Education Scientific Research Project(22B0310).
文摘Carbon emission reduction and clean energy development are urgent demands for mankind in the coming decades.Exploring an efficient CO_(2) storage method can significantly reduce CO_(2) emissions in the short term.In this study,we attempted to construct sediment samples with different residual CH_(4) hydrate amounts and reservoir conditions,and then investigate the potentials of both CO_(2) storage and enhanced CH_(4) recovery in depleted gas hydrate deposits in the permafrost and ocean zones,respectively.The results demonstrate that CO_(2) hydrate formation rate can be significantly improved due to the presence of residual hydrate seeds;However,excessive residual hydrates in turn lead to the decrease in CO_(2) storage efficiency.Affected by the T-P conditions of the reservoir,the storage amount of liquid CO_(2) can reach 8 times that of gaseous CO_(2),and CO_(2) stored in hydrate form reaches 2-4 times.Additionally,we noticed two other advantages of this method.One is that CO_(2) injection can enhance CH_(4) recovery rate and increases CH_(4) recovery by 10%-20%.The second is that hydrate saturation in the reservoir can be restored to 20%-40%,which means that the solid volume of the reservoir avoids serious shrinkage.Obviously,this is crucial for protecting the goaf stability.In summary,this approach is greatly promising for high-efficient CO_(2) storage and safe exploitation of gas hydrate.
文摘Hydrogen peroxide(H_(2)O_(2))has gained widespread attention as a versatile oxidant and a mild disin-fectant.Here,an electrostatic self-assembly method is applied to couple ZnSe quantum dots(QDs)with a flower-like covalent organic framework(COF)to form a step-scheme(S-scheme)photocata-lyst for H_(2)O_(2)production.The as-prepared S-scheme photocatalyst exhibits a broad light absorption range with an edge at 810 nm owing to the synergistic effect between the ZnSe QDs and COF.The S-scheme charge-carrier transfer mechanism is validated by performing Fermi level calculations and in-situ X-ray photoelectron and femtosecond transient absorption spectroscopies.Photolumi-nescence,time-resolved photoluminescence,photocurrent response,electrochemical impedance spectroscopy,and electron paramagnetic resonance results show that the S-scheme heterojunction not only promotes charge carrier separation but also boosts the redox ability,resulting in enhanced photocatalytic performance.Remarkably,a 10%-ZnSe QD/COF has excellent photocatalytic H_(2)O_(2)-production activity,and the optimal S-scheme composite with ethanol as the hole scavenger yields a H_(2)O_(2)-production rate of 1895 mol g^(-1)h^(-1).This study presents an example of a high-performance organic/inorganic S-scheme photocatalyst for H_(2)O_(2)production.
文摘Designing a step-scheme(S-scheme)heterojunction photocatalyst with vacancy engineering is a reliable approach to achieve highly efficient photocatalytic H_(2)production activity.Herein,a hollow ZnO/ZnS S-scheme heterojunction with O and Zn vacancies(VO,Zn-ZnO/ZnS)is rationally constructed via ion-exchange and calcination treatments.In such a photocatalytic system,the hollow structure combined with the introduction of dual vacancies endows the adequate light absorption.Moreover,the O and Zn vacancies serve as the trapping sites for photo-induced electrons and holes,respectively,which are beneficial for promoting the photo-induced carrier separation.Meanwhile,the S-scheme charge transfer mechanism can not only improve the separation and transfer efficiencies of photo-induced carrier but also retain the strong redox capacity.As expected,the optimized VO,Zn-ZnO/ZnS heterojunction exhibits a superior photocatalytic H_(2) production rate of 160.91 mmol g^(-1)h^(-1),approximately 643.6 times and 214.5 times with respect to that obtained on pure ZnO and ZnS,respectively.Simultaneously,the experimental results and density functional theory calculations disclose that the photo-induced carrier transfer pathway follows the S-scheme heterojunction mechanism and the introduction of O and Zn vacancies reduces the surface reaction barrier.This work provides an innovative strategy of vacancy engineering in S-scheme heterojunction for solar-to-fuel energy conversion.
基金National Natural Science Foundation of China via grant number 52174035,52304048China Postdoctoral Science Foundation(2022M722637)Research and Innovation Fund for Graduate Students of Southwest Petroleum University(2022KYCX026).
文摘Recent studies have indicated that the injection of carbon dioxide(CO_(2))can lead to increased oil recovery in fractured shale reservoirs following natural depletion.Despite advancements in understanding mass exchange processes in subsurface formations,there remains a knowledge gap concerning the disparities in these processes between the matrix and fractures at the pore scale in formations with varying permeability.This study aims to experimentally investigate the CO_(2) diffusion behaviors and in situ oil recovery through a CO_(2) huff‘n’puff process in the Jimsar shale oil reservoir.To achieve this,we designed three matrix-fracture models with different permeabilities(0.074 mD,0.170 mD,and 0.466 mD)and experimented at 30 MPa and 91℃.The oil concentration in both the matrix and fracture was monitored using a low-field nuclear magnetic resonance(LF-NMR)technique to quantify in situ oil recovery and elucidate mass-exchange behaviors.The results showed that after three cycles of CO_(2) huff‘n’puff,the total recovery degree increased from 30.28%to 34.95%as the matrix permeability of the core samples increased from 0.074 to 0.466 mD,indicating a positive correlation between CO_(2) extraction efficiency and matrix permeability.Under similar fracture conditions,the increase in matrix permeability further promoted CO_(2) extraction efficiency during CO_(2) huff‘n’puff.Specifically,the increase in matrix permeability of the core had the greatest effect on the extraction of the first-cycle injection in large pores,which increased from 16.42%to 36.64%.The findings from our research provide valuable insights into the CO_(2) huff‘n’puff effects in different pore sizes following fracturing under varying permeability conditions,shedding light on the mechanisms of CO_(2)-enhanced oil recovery in fractured shale oil reservoirs.
基金National Natural Science Foundation of China (22179065)Tianjin Graduate Research and Innovation Project (2022BKY018)。
文摘Ammonia plays a crucial role in contemporary society,impacting medicine,agriculture,and the chemical industry.The conventional industrial synthesis of NH_(3) through the Haber-Bosch technique,carried out under severe reaction conditions,leads to substantial energy consumption and environmental pollution.It is thus imperative for NH_(3) synthesis methods to be investigated under more favorable conditions.Synthesis of ammonia by electrocatalysis can effectively reduce the environmental damage and other urgent problems,which is a promising solution.Metal-nitrogen series batteries(M-N batteries),such as metal-nitrogen gas batteries,metal-nitrogen oxide batteries and metal-oxynitride batteries have been regarded recently as an exemplar of concurrent NH_(3) synthesis and energy production.Nonetheless,the large-scale application of these batteries is still limited by numerous challenges are currently existing in building high-efficiency M-N batteries,including poor Faradic efficiency and low NH_(3) yield.Therefore,a comprehensive overview of M-N batteries is offered,specifically focusing on advanced strategies for designing highly efficient cathode catalysts in anticipation of future developments.The metal anodes,cathodic electro-reduction reactions,and design principles are encompassed in the discussion,offering detailed insights to enhance understanding.Mechanisms,feasibility analyses,technoeconomic assessments,device combinations,and comparative evaluations are delved into in the review,contributing to a thorough comprehension of diverse systems and their application potential.Perspectives and opportunities for future research directions are also delineated.
文摘The development of an efficient artificial H_(2)O_(2) photosynthesis system is a challenging work using H_(2)O and O_(2) as starting materials.Herein,3D In_(2.77)S_(4) nanoflower precursor was in-situ deposited on K^(+)-doped g-C_(3)N_(4)(KCN)nanosheets using a solvothermal method,then In_(2.77)S_(4)/KCN(IS/KCN)het-erojunction with an intimate interface was obtained after a calcination process.The investigation shows that the photocatalytic H_(2)O_(2) production rate of 50IS/KCN can reach up to 1.36 mmol g^(-1)h^(-1)without any sacrificial reagents under visible light irradiation,which is 9.2 times and 4.1 times higher than that of KCN and In_(2.77)S_(4)/respectively.The enhanced activity of the above composite can be mainly attributed to the S-scheme charge transfer route between KCN and In_(2.77)S_(4) according to density functional theory calculations,electron paramagnetic resonance and free radical capture tests,leading to an expanded light response range and rapid charge separation at their interface,as well as preserving the active electrons and holes for H_(2)O_(2) production.Besides,the unique 3D nanostructure and surface hydrophobicity of IS/KCN facilitate the diffusion and transportation of O_(2) around the active centers,the energy barriers of O_(2) protonation and H_(2)O_(2) desorption steps are ef-fectively reduced over the composite.In addition,this system also exhibits excellent light harvesting ability and stability.This work provides a potential strategy to explore a sustainable H_(2)O_(2) photo-synthesis pathway through the design of heterojunctions with intimate interfaces and desired reac-tion thermodynamics and kinetics.
文摘IL-2 production and IL-2 receptor (Tac antigen) of the peripheral blood mononuclear cells in 30 patients with aplastic anemic (AA) were studied. We found that mononuclear cells from patients produce spontaneously IL-2 in the absence of exogenous lee-tin stimulation, the proportion of Tac+ cells in mononuclear cells increased. The release of IL-2 and or Tac antigen expression were elevated in almost every patient with AA. The plasma from patients stimulate mitogen-induced blastogenesis and Tac antigen expression of normal human lymphocytes. Immunological 1 abnormalities of patients with AA possibly might represents secondary response to bone marrow depression.
基金This work was supported by National Natural Science Foundation of China(NSFC)(81500871)Natural Science Foundation of Guangdong Province(2016A030310214).
文摘Periodontal disease is the leading cause of tooth loss,which is also a high-risk factor for other diseases including oral cancer and cardiovascular disease.Periodontitis is one of the most common type of periodontal diseases.Interleukin-1β(IL-1β)plays a key role in the pathogenesis of periodontitis.However,the mechanism how IL-1βis produced during periodontitis is still unclear.In the present study,we found that humanβ-defensin 2(hBD2)enhances IL-1βproduction through an LPS-primed human acute monocytic leukemia(THP-1)macrophage model.Inhibition of P2X purinoceptor 7(P2X7)reduced hBD2-enhanced IL-1βproduction.Incubation of LPS-primed THP-1 macrophages with potassium chloride also suppressed hBD2-enhanced IL-1βproduction.Silence of inflammasome adaptor Nod-like receptor family pyrin domain containing 3(NLRP3)led to reduced hBD2-enhanced IL-1βproduction.Likewise,inhibition of caspase-1 also resulted in the decrease of IL-1β.Moreover,an ethidium bromide uptake test indicated that hBD2-activated caspase-1 mediated pyroptotic pore formation.Subsequent lactate dehydrogenase detection and flow cytometric analysis indicated that hBD2 also induced pyroptosis.In brief,these findings illustrated not only the mechanism of hBD2 in enhancing the inflammatory response,but also provided novel therapeutic targets for periodontitis.