The robust fault detection filter design for uncertain linear systems with nonlinear perturbations is formulated as a two-objective optimization problem. Solvable conditions for the existence of such a robust fault de...The robust fault detection filter design for uncertain linear systems with nonlinear perturbations is formulated as a two-objective optimization problem. Solvable conditions for the existence of such a robust fault detection filter are given in terms of matrix inequalities (MIs), which can be solved by applying iterative linear matrix inequality (ILMI) techniques. Particularly, compared with two existing LMI methods, the developed algorithm is more generalized and less conservative.An illustrative example is given to show the effectiveness of the proposed method.展开更多
To investigate the robust fault detection (RFD) observer design for linear uncertain systems, the H_index and H∞ norm are used to describe this observer design as optimization problems. Conditions for the existence...To investigate the robust fault detection (RFD) observer design for linear uncertain systems, the H_index and H∞ norm are used to describe this observer design as optimization problems. Conditions for the existence of such a fault detection observer are given in terms of matrix inequalities. The solution is obtained by new iterative linear matrix inequality (ILMI) algorithms. The RFD observer design over finite frequency range in which Of does not have full column rank for a system is also considered. Numerical example demonstrates that the designed fault detection observer has high sensitivity to the fault and strong robustness to the unknown input.展开更多
基金Supported by National Natural Science Foundation of P. R. China (60374021 and 60274015)Natural Science Foundation of Shandong Province (Y2002G05)
文摘The robust fault detection filter design for uncertain linear systems with nonlinear perturbations is formulated as a two-objective optimization problem. Solvable conditions for the existence of such a robust fault detection filter are given in terms of matrix inequalities (MIs), which can be solved by applying iterative linear matrix inequality (ILMI) techniques. Particularly, compared with two existing LMI methods, the developed algorithm is more generalized and less conservative.An illustrative example is given to show the effectiveness of the proposed method.
文摘针对一类不确定系统,提出了一种具有次优保性能滑模面的静态输出反馈滑模控制方法.首先将滑模面的设计问题等价为一个对称矩阵的求解问题,基于等效控制法,推导了保性能滑模面存在的充分条件.然后基于迭代线性矩阵不等式(iterative linear matrix inequality,ILMI)方法,给出了次优保性能线性滑模面的求解算法,最后基于线性矩阵不等式(linearmatrix inequality,LMI)方法,设计了输出反馈滑模控制器,使得闭环系统渐近稳定且切换函数能在有限时间内到达零.该方法首次实现了输出反馈滑模面的优化,且具有保守性小、无需对被控系统模型进行坐标变换的优点.仿真结果验证了本文方法的优越性.
基金Supported by National Natural Science Foundation of China (No. 61104026)Open Fund for National Defense Key Subject Laboratory ofSmall Spacecraft Technology (No. HIT. KLOF. 2009092)
文摘To investigate the robust fault detection (RFD) observer design for linear uncertain systems, the H_index and H∞ norm are used to describe this observer design as optimization problems. Conditions for the existence of such a fault detection observer are given in terms of matrix inequalities. The solution is obtained by new iterative linear matrix inequality (ILMI) algorithms. The RFD observer design over finite frequency range in which Of does not have full column rank for a system is also considered. Numerical example demonstrates that the designed fault detection observer has high sensitivity to the fault and strong robustness to the unknown input.