Phase Two of the Integrative Monsoon Frontal Rainfall Experiment(IMFRE-II)was conducted over the middle and lower reaches of the Yangtze River during the period 16 June to 19 July 2020.This paper provides a brief over...Phase Two of the Integrative Monsoon Frontal Rainfall Experiment(IMFRE-II)was conducted over the middle and lower reaches of the Yangtze River during the period 16 June to 19 July 2020.This paper provides a brief overview of the IMFRE-II field campaign,including the multiple ground-based remote sensors,aircraft probes,and their corresponding measurements during the 2020 mei-yu period,as well as how to use these numerous datasets to answer scientific questions.The highlights of IMFRE-II are:(1)to the best of our knowledge,IMFRE-II is the first field campaign in China to use ground-based,airborne,and spaceborne platforms to conduct comprehensive observations over the middle and lower reaches of the Yangtze River;and(2)seven aircraft flights were successfully carried out,and the spectra of ice particles,cloud droplets,and raindrops at different altitudes were obtained.These in-situ measurements will provide a“cloud truth”to validate the ground-based and satellite-retrieved cloud and precipitation properties and quantitatively estimate their retrieval uncertainties.They are also crucial for the development of a warm(and/or cold)rain conceptual model in order to better understand the cloud-to-rain conversion and accretion processes in mei-yu precipitation events.Through an integrative analysis of ground-based,aircraft,and satellite observations and model simulations,we can significantly improve our cloud and precipitation retrieval algorithms,investigate the microphysical properties of cloud and precipitation,understand in-depth the formation and dissipation mechanisms of mei-yu frontal systems,and improve cloud microphysics parameterization schemes and model simulations.展开更多
The mei-yu season,typically occurring from mid-June to mid-July,on average,contributes to 32%of the annual precipitation over the Yangtze-Huai River Valley(YHRV)and represents one of the three heavy-rainfall periods i...The mei-yu season,typically occurring from mid-June to mid-July,on average,contributes to 32%of the annual precipitation over the Yangtze-Huai River Valley(YHRV)and represents one of the three heavy-rainfall periods in China.Here,we briefly review the large-scale background,synoptic pattern,moisture transport,and cloud and precipitation characteristics of the mei-yu frontal systems in the context of the ongoing Integrative Monsoon Frontal Rainfall Experiment(IMFRE)field campaign.Phase one of the campaign,IMFRE-I,was conducted from 10 June to 10 July 2018 in the middle reaches of the YHRV.Led by the Wuhan Institute of Heavy Rain(IHR)with primary support from the National Natural Science Foundation of China,IMFRE-I maximizes the use of our observational capacity enabled by a suite of ground-based and remote sensing instruments,most notably the IHR Mesoscale Heavy Rainfall Observing System(MHROS),including different wavelengths of radars,microwave radiometers,and disdrometers.The KA350(Shanxi King-Air)aircraft participating in the campaign is equipped with Ka-band cloud radar and different probes.The comprehensive datasets from both the MHROS and aircraft instruments are combined with available satellite observations and model simulations to answer the three scientific questions of IMFRE-I.Some highlights from a previously published special issue are included in this review,and we also briefly introduce the IMFRE-II field campaign,conducted during June-July 2020,where the focus was on the spatiotemporal evolutions of the mei-yu frontal systems over the middle and lower reaches of the YHRV.展开更多
基金The IMFRE-II field campaign was primarily supported by the National Natural Science Foundation of China(Grant Nos.41620104009 and 91637211)the Key Program for International S&T Cooperation Projects of China(Grant No.2016YFE0109400)the National Key R&D Program of China(Grant No.2018YFC1507200).
文摘Phase Two of the Integrative Monsoon Frontal Rainfall Experiment(IMFRE-II)was conducted over the middle and lower reaches of the Yangtze River during the period 16 June to 19 July 2020.This paper provides a brief overview of the IMFRE-II field campaign,including the multiple ground-based remote sensors,aircraft probes,and their corresponding measurements during the 2020 mei-yu period,as well as how to use these numerous datasets to answer scientific questions.The highlights of IMFRE-II are:(1)to the best of our knowledge,IMFRE-II is the first field campaign in China to use ground-based,airborne,and spaceborne platforms to conduct comprehensive observations over the middle and lower reaches of the Yangtze River;and(2)seven aircraft flights were successfully carried out,and the spectra of ice particles,cloud droplets,and raindrops at different altitudes were obtained.These in-situ measurements will provide a“cloud truth”to validate the ground-based and satellite-retrieved cloud and precipitation properties and quantitatively estimate their retrieval uncertainties.They are also crucial for the development of a warm(and/or cold)rain conceptual model in order to better understand the cloud-to-rain conversion and accretion processes in mei-yu precipitation events.Through an integrative analysis of ground-based,aircraft,and satellite observations and model simulations,we can significantly improve our cloud and precipitation retrieval algorithms,investigate the microphysical properties of cloud and precipitation,understand in-depth the formation and dissipation mechanisms of mei-yu frontal systems,and improve cloud microphysics parameterization schemes and model simulations.
基金The datasets were provided by the Mesoscale Heavy Rainfall Observing System(MHROS)of the Wuhan Institute of Heave Rain(IHR),China Meteorological AdministrationThe IMFRE field campaign is primarily supported by the National Natural Science Foundation of China(Grant Nos.41620104009 and 91637211).
文摘The mei-yu season,typically occurring from mid-June to mid-July,on average,contributes to 32%of the annual precipitation over the Yangtze-Huai River Valley(YHRV)and represents one of the three heavy-rainfall periods in China.Here,we briefly review the large-scale background,synoptic pattern,moisture transport,and cloud and precipitation characteristics of the mei-yu frontal systems in the context of the ongoing Integrative Monsoon Frontal Rainfall Experiment(IMFRE)field campaign.Phase one of the campaign,IMFRE-I,was conducted from 10 June to 10 July 2018 in the middle reaches of the YHRV.Led by the Wuhan Institute of Heavy Rain(IHR)with primary support from the National Natural Science Foundation of China,IMFRE-I maximizes the use of our observational capacity enabled by a suite of ground-based and remote sensing instruments,most notably the IHR Mesoscale Heavy Rainfall Observing System(MHROS),including different wavelengths of radars,microwave radiometers,and disdrometers.The KA350(Shanxi King-Air)aircraft participating in the campaign is equipped with Ka-band cloud radar and different probes.The comprehensive datasets from both the MHROS and aircraft instruments are combined with available satellite observations and model simulations to answer the three scientific questions of IMFRE-I.Some highlights from a previously published special issue are included in this review,and we also briefly introduce the IMFRE-II field campaign,conducted during June-July 2020,where the focus was on the spatiotemporal evolutions of the mei-yu frontal systems over the middle and lower reaches of the YHRV.