Wind power ramp events increasingly affect the integration of wind power and cause more and more problems to the safety of power grid operation in recent years.Several forecasting techniques for wind power ramp events...Wind power ramp events increasingly affect the integration of wind power and cause more and more problems to the safety of power grid operation in recent years.Several forecasting techniques for wind power ramp events have been reported.In this paper,the statistical scenarios forecasting method is proposed for wind power ramp event probabilistic forecasting based on the probability generating model.Multi-objective fitness functions are established considering cumulative density functions and higher order moment autocorrelation functions with respect to the consistency of distribution and timing characteristics,respectively.Parameters of probability generating model are calculated by the iterative optimization using the modified genetic algorithm with multi-objective fitness functions.A number of statistical scenarios captured bands are generated accordingly.Eventually,ramp event probability characteristics are detected from scenarios captured bands to evaluate the ramp event forecasting method.A wind plant of Bonneville Power Administration with actual wind power data is selected for calculation and statistical analysis.It is shown that statistical results with multi-objective functions are more accurate than the results with single objective functions.Moreover,the statistical scenarios forecasting method can accurately estimate the characteristics of wind power ramp events.The results verify that the proposed method can guide the generation method of statistical scenarios and forecasting models for ramp events.展开更多
In order to improve the prediction accuracy and test the generalization ability of the dam deformation analysis model, the back-propagation(BP) neural network model for dam deformation analysis is studied, and the m...In order to improve the prediction accuracy and test the generalization ability of the dam deformation analysis model, the back-propagation(BP) neural network model for dam deformation analysis is studied, and the merging model is built based on the neural network BP algorithm and the traditional statistical model. The three models mentioned above are calculated and analyzed according to the long-term deformation observation data in Chencun Dam. The analytical results show that the average prediction accuracies of the statistical model and the BP neural network model are ~ 0.477 and +- 0.390 mm, respectively, while the prediction accuracy of the merging model is ~0. 318 mm, which is improved by 33% and 18% compared to the other two models, respectively. And the merging model has a better generalization ability and broad applicability.展开更多
In this study,the design of a computational heuristic based on the nonlinear Liénard model is presented using the efficiency of artificial neural networks(ANNs)along with the hybridization procedures of global an...In this study,the design of a computational heuristic based on the nonlinear Liénard model is presented using the efficiency of artificial neural networks(ANNs)along with the hybridization procedures of global and local search approaches.The global search genetic algorithm(GA)and local search sequential quadratic programming scheme(SQPS)are implemented to solve the nonlinear Liénard model.An objective function using the differential model and boundary conditions is designed and optimized by the hybrid computing strength of the GA-SQPS.The motivation of the ANN procedures along with GA-SQPS comes to present reliable,feasible and precise frameworks to tackle stiff and highly nonlinear differentialmodels.The designed procedures of ANNs along with GA-SQPS are applied for three highly nonlinear differential models.The achieved numerical outcomes on multiple trials using the designed procedures are compared to authenticate the correctness,viability and efficacy.Moreover,statistical performances based on different measures are also provided to check the reliability of the ANN along with GASQPS.展开更多
A multiple model tracking algorithm based on neural network and multiple-process noise soft-switching for maneuvering targets is presented.In this algorithm, the"current"statistical model and neural network are runn...A multiple model tracking algorithm based on neural network and multiple-process noise soft-switching for maneuvering targets is presented.In this algorithm, the"current"statistical model and neural network are running in parallel.The neural network algorithm is used to modify the adaptive noise filtering algorithm based on the mean value and variance of the"current"statistical model for maneuvering targets, and then the multiple model tracking algorithm of the multiple processing switch is used to improve the precision of tracking maneuvering targets.The modified algorithm is proved to be effective by simulation.展开更多
This study is aimed at the development of a statistical model for forecasting heavy rain in South Korea. For the 3-hour weather forecast system, the 10 km×10 km area-mean amount of rainfall at 6 stations (Seoul,...This study is aimed at the development of a statistical model for forecasting heavy rain in South Korea. For the 3-hour weather forecast system, the 10 km×10 km area-mean amount of rainfall at 6 stations (Seoul, Daejeon, Gangreung, (Jwangju, Busan, and Jeju) in South Korea are used. And the corresponding 45 synoptic factors generated by the numerical model are used as potential predictors. Four statistical forecast models (linear regression model, logistic regression model, neural network model and decision tree model) for the occurrence of heavy rain are based on the model output statistics (MOS) method. They are separately estimated by the same training data. The thresholds are considered to forecast the occurrence of heavy rain because the distribution of estimated values that are generated by each model is too skewed. The results of four models are compared via Heidke skill scores. As a result, the logistic regression model is recommended.展开更多
基金This work was supported by the National Basic Research Program of China(No.2012CB215101).
文摘Wind power ramp events increasingly affect the integration of wind power and cause more and more problems to the safety of power grid operation in recent years.Several forecasting techniques for wind power ramp events have been reported.In this paper,the statistical scenarios forecasting method is proposed for wind power ramp event probabilistic forecasting based on the probability generating model.Multi-objective fitness functions are established considering cumulative density functions and higher order moment autocorrelation functions with respect to the consistency of distribution and timing characteristics,respectively.Parameters of probability generating model are calculated by the iterative optimization using the modified genetic algorithm with multi-objective fitness functions.A number of statistical scenarios captured bands are generated accordingly.Eventually,ramp event probability characteristics are detected from scenarios captured bands to evaluate the ramp event forecasting method.A wind plant of Bonneville Power Administration with actual wind power data is selected for calculation and statistical analysis.It is shown that statistical results with multi-objective functions are more accurate than the results with single objective functions.Moreover,the statistical scenarios forecasting method can accurately estimate the characteristics of wind power ramp events.The results verify that the proposed method can guide the generation method of statistical scenarios and forecasting models for ramp events.
基金The Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXLX11_0143)
文摘In order to improve the prediction accuracy and test the generalization ability of the dam deformation analysis model, the back-propagation(BP) neural network model for dam deformation analysis is studied, and the merging model is built based on the neural network BP algorithm and the traditional statistical model. The three models mentioned above are calculated and analyzed according to the long-term deformation observation data in Chencun Dam. The analytical results show that the average prediction accuracies of the statistical model and the BP neural network model are ~ 0.477 and +- 0.390 mm, respectively, while the prediction accuracy of the merging model is ~0. 318 mm, which is improved by 33% and 18% compared to the other two models, respectively. And the merging model has a better generalization ability and broad applicability.
文摘In this study,the design of a computational heuristic based on the nonlinear Liénard model is presented using the efficiency of artificial neural networks(ANNs)along with the hybridization procedures of global and local search approaches.The global search genetic algorithm(GA)and local search sequential quadratic programming scheme(SQPS)are implemented to solve the nonlinear Liénard model.An objective function using the differential model and boundary conditions is designed and optimized by the hybrid computing strength of the GA-SQPS.The motivation of the ANN procedures along with GA-SQPS comes to present reliable,feasible and precise frameworks to tackle stiff and highly nonlinear differentialmodels.The designed procedures of ANNs along with GA-SQPS are applied for three highly nonlinear differential models.The achieved numerical outcomes on multiple trials using the designed procedures are compared to authenticate the correctness,viability and efficacy.Moreover,statistical performances based on different measures are also provided to check the reliability of the ANN along with GASQPS.
文摘A multiple model tracking algorithm based on neural network and multiple-process noise soft-switching for maneuvering targets is presented.In this algorithm, the"current"statistical model and neural network are running in parallel.The neural network algorithm is used to modify the adaptive noise filtering algorithm based on the mean value and variance of the"current"statistical model for maneuvering targets, and then the multiple model tracking algorithm of the multiple processing switch is used to improve the precision of tracking maneuvering targets.The modified algorithm is proved to be effective by simulation.
文摘This study is aimed at the development of a statistical model for forecasting heavy rain in South Korea. For the 3-hour weather forecast system, the 10 km×10 km area-mean amount of rainfall at 6 stations (Seoul, Daejeon, Gangreung, (Jwangju, Busan, and Jeju) in South Korea are used. And the corresponding 45 synoptic factors generated by the numerical model are used as potential predictors. Four statistical forecast models (linear regression model, logistic regression model, neural network model and decision tree model) for the occurrence of heavy rain are based on the model output statistics (MOS) method. They are separately estimated by the same training data. The thresholds are considered to forecast the occurrence of heavy rain because the distribution of estimated values that are generated by each model is too skewed. The results of four models are compared via Heidke skill scores. As a result, the logistic regression model is recommended.