期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Processing and Microstructural Evolution of Superalloy Inconel 718 during Hot Tube Extrusion 被引量:8
1
作者 ShihongZHANG ZhongtangWANG +2 位作者 BingQIAO YiXU TingfengXU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第2期175-178,共4页
The processing parameters of tube extrusion for superalloy Inconel 718 (IN 718), such as slug temperature, tools temperature, choice of lubricant, extrusion ratio and extrusion speed, were determined by experiment in ... The processing parameters of tube extrusion for superalloy Inconel 718 (IN 718), such as slug temperature, tools temperature, choice of lubricant, extrusion ratio and extrusion speed, were determined by experiment in this paper. An appropriate temperature range recommended for the slug is 1080-1120℃, and the temperature range recommended for the tools is 350-500℃. The microstructural evolution of superalloy IN 718 during tube extrusion was analyzed. With the increase of the deformation the cross crystal grains were slightly refined. While the vertical crystal grain is elongated evidently and the tensile strength increased along the axial rake. Glass lubricants have to be spread on the slug surface after being heated to 150-200℃, vegetable oil or animal oil can be used as the lubricant on the surface of the tools to reduce the extrusion force remarkably. 展开更多
关键词 superalloy in 718 Tube extrusion Microstructure evolution
下载PDF
Constitutive Equation of Superalloy In718 in Hammer Forging Process
2
作者 HU Jian-ping 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2001年第1期50-54,共5页
A constitutive equation reflecting the flow behavior of Superalloy In718 during the counter-blow hammer forging process was developed in terms of the relationship of flow stress and hot-deformation parameters,such as ... A constitutive equation reflecting the flow behavior of Superalloy In718 during the counter-blow hammer forging process was developed in terms of the relationship of flow stress and hot-deformation parameters,such as strain,strain rate,and deformation temperature.A new simplified approach for the complex multi-pass stress-strain curves has been attempted.The simulation curves calculated by constitutive equation are consistent with the experimental data. 展开更多
关键词 superalloy in718 constitutive equation hammer forging
下载PDF
CONSTITUTIVE RELATIONSHIP OF SUPERALLOY IN718
3
作者 J.M. Zhang L.Z. Ma +2 位作者 J. Y. Zhuang Q. Deng J.H Du and Z. Y Zhong(Department of Superalloys, Central Iron & Steel Research Institute, Beijing 100081, China)P. Janschek(Thyssen Umformtechnik GMBH, 42859 Remscheid, Germany ) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1996年第6期473-477,共5页
Isothermal constant speed compression tests of superalloy IN718 were conducted using a computer-controlled MTS machine at temperatures from 960 to 1040℃, with initial strain rates from 0.001 s ̄(1) to 1.0 s ̄(1) and ... Isothermal constant speed compression tests of superalloy IN718 were conducted using a computer-controlled MTS machine at temperatures from 960 to 1040℃, with initial strain rates from 0.001 s ̄(1) to 1.0 s ̄(1) and engineering strain from 0.1 to 0. 7.The variations of flow stress with deformation temperature, initial strain rate and engineering strain were analyzed in the paper. It was found that there was an obvious power-law relationship between flow stress and initial strain rate, which showed the behavior of strain rate hardening of superalloy IN718 at elevated temperatures.The relationship between flow stress and temperature could be described by an inverse trigonometric function.And the turning point on the curve may be related to the behavior of δ phase at 1000℃. Meanwhile, it was found that there was a complicated relationship between flow stress and strain,which was indicative of the comprehensive effect of work hardening and dynamic softening on flow stress during hot deformation. From the results of these tests, a constitutive equation of superalloy IN718 was developed. 展开更多
关键词 constitutive relationship superalloy in718 flow stress
下载PDF
Formation and Evolution of Surface Morphology in Overhang Structure of IN718 Superalloy Fabricated by Laser Powder Bed Fusion
4
作者 Haotian Zhou Haijun Su +6 位作者 Yinuo Guo Yuan Liu Di Zhao Peixin Yang Zhonglin Shen Le Xia Min Guo 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2023年第9期1433-1453,共21页
Controlling the overhang surface quality is still a formidable challenge in manufacturing the components with complex structures during laser powder bed fusion(LPBF).This study systematically uncovers the effects of t... Controlling the overhang surface quality is still a formidable challenge in manufacturing the components with complex structures during laser powder bed fusion(LPBF).This study systematically uncovers the effects of the volume energy density(VED)and overhang angle on the evolution of surface morphology and corresponding surface roughness(Ra)of top and down-skin surfaces of IN718 superalloy samples.The results show that balling,Plateau-Rayleigh instability,open pore and humping caused by the material stacking are the main factors contributing to the apparent deterioration of top surface quality.When the VED is 80–100 J/mm^(3),the high down-skin surface roughness is attributed to the serious dross caused by recoil pressure and sinking of the melt pool.Using insufficient VED(15–50 J/mm^(3))can easily lead to poor metallurgical bonding and material spalling on the down-skin surface.In addition,overhang angle also significantly affects down-skin surface roughness due to the stair effect and the adhered unmelted powders.An improvement in the surface quality of down-skin surface is observed when the overhang angle increases.Based on the finding of this investigation,an optical VED(59.5 J/mm^(3))significantly improves the top and down-skin surface quality and porosity of overhang samples.This study provides an insight into synergy ascension of the top and down-skin surface quality in the overhang structure. 展开更多
关键词 Laser powder bed fusion in718 superalloy Surface roughness Overhang structure
原文传递
Effects of Thermally Assisted Warm Laser Shock Processing on the Microstructure and Fatigue Property of IN718 Superalloy 被引量:1
5
作者 Yang Liu Lei Wang +1 位作者 Kaiyue Yang Xiu Song 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第12期1645-1656,共12页
The effects of laser shock processing(LSP)and warm laser shock processing(WLSP)on the microstructure of surface hardening layer and high-cycle fatigue performance at room temperature and high temperature(600°C)of... The effects of laser shock processing(LSP)and warm laser shock processing(WLSP)on the microstructure of surface hardening layer and high-cycle fatigue performance at room temperature and high temperature(600°C)of IN718 alloy were investigated.It has been revealed that the grain refined hardening layer with greater residual compression stresses,higher fraction of coincidence site lattice(CSL)boundaries and dislocation densities was formed in WLSP-treated alloy than in LSP-treated alloys.Moreover,microtwins includedγ″phase/high density dislocation complex was found in the surface of WLSP-treated alloy.These characters caused the significant enhancement of the medium value fatigue strength of WLSP-treated alloy at room temperature and elevated temperature.Apparently,the microtwins includedγ″phase/high density dislocation complex formed in the surface hardening layer of LSP-treated alloy has more complicated steric structure and more stable at elevated temperature thanγ″phase/low density dislocation complex formed in LSP-treated alloy,leading to the slow recovery process.Therefore,the surface hardening layer in the WLSP-treated alloy remained more ideal strengthening effect under high-cycle fatigue at elevated temperature than that in LSP-treated alloy.This resulted in the much longer fatigue crack initiation incubation and longer high-cycle life of WLSP-treated IN718 alloy under cycling load at 600℃.This discovery provides a new cognition of fatigue resistance by WLSP treatment of precipitation strengthening superalloy. 展开更多
关键词 in718 superalloy Warm laser shock processing(WLSP) MICROSTRUCTURE FATIGUE Residual stress
原文传递
Improvement on Hot Workability of γ-TiAl Base Alloy 被引量:1
6
作者 SU Xi LI Shi-qiong +1 位作者 MA Wan-qing ZHONG Zeng-yong 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2001年第1期45-49,共5页
A constitutive equation reflecting the flow behavior of Superalloy In718 during the counter blow hammer forging process was developed in terms of the relationship of flow stress and hot deformation parameters, such ... A constitutive equation reflecting the flow behavior of Superalloy In718 during the counter blow hammer forging process was developed in terms of the relationship of flow stress and hot deformation parameters, such as strain, strain rate, and deformation temperature. A new simplified approach for the complex multi pass stress strain curves has been attempted. The simulation curves calculated by constitutive equation are consistent with the experimental data. 展开更多
关键词 superalloy in718 constitutive equation hammer forging
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部