Background The level of c-Myc is closely associated with high pathological grade and the poor prognosis of gliomas. Vascular endothelial growth factor (VEGF) is the most important angiogenic factor that potently sti...Background The level of c-Myc is closely associated with high pathological grade and the poor prognosis of gliomas. Vascular endothelial growth factor (VEGF) is the most important angiogenic factor that potently stimulates the proliferation and migration of vascular endothelial cells. This study aimed to address the biological importance of c-Myc in the development of gliomas, we downregulated the expression of c-Myc in the human glioblastoma cell line IN500 and studied the in vitro effect on cellular growth, proliferation, and apoptosis and the expression of VEGF and the in vivo effect on tumor formation in a xenograft mouse model. Methods IN500A cells were stably transfected with shRNA-expressing plasmids for either c-Myc (pCMYC-shRNA) or as a control (pCtrl-shRNA). Following establishment of stable cells, the mRNA expressions of c-Myc and VEGF were examined by reverse transcription (RT)-PCR, and c-Myc and VEGF proteins by Western blotting and immunohistochemistry. Cell-cycle progression and apoptosis were determined by flow cytometry. The in vivo effect of targeting c-Myc was determined by subcutaneous injection of stable cells into immunodeficient nude mice. Results The stable transfection of pCMYC-shRNA successfully knocked down the steady-state mRNA and protein levels of c-Myc in IN500, which positively correlated with the downregulation of VEGF. Downregulating c-Myc in vitro also led to G1-S arrest and enhanced apoptosis. In vivo, targeting c-Myc reduced xenograft tumor formation and resulted in significantly smaller tumors. Conclusions c-Myc has multiple functions in glioblastoma development that include regulating cell-cycle, apoptosis, and VEGF expression. Targeting c-Myc expression may be a promising therapy for malignant glioma.展开更多
Sulfide stress corrosion cracking (SSCC) behaviour of UNS G11180 steel in 5% NaCl solution with H2S was studied by slow strain rate tensile test (SSRT), SEM and electrochemical hydro gen permeation technique. The resu...Sulfide stress corrosion cracking (SSCC) behaviour of UNS G11180 steel in 5% NaCl solution with H2S was studied by slow strain rate tensile test (SSRT), SEM and electrochemical hydro gen permeation technique. The results reveal different cracking mechanism and H permeation current (IH) through UNS G11180 steel plate in different concentration of H2S solution. The susceptibility to SSCC of UNS G11180 Steel in 5% NaCl solution with H2S was evaluated by the permeation current(IH, μA), which depends on the concentration (c×10-6) of H2S by the equation:IH = 8.525 ×c0.7249. lt is proved that the electrochemical H permeation method is a practical way to assess the susceptibility to SSCC.展开更多
The changes in 5α-reductase (type 2 ) gene expression in the epi-didymis of puberty diabetic rats were studied by the Northern blot and Dotblot method. Rats were divided into 3 groups: the control group (C), thediabe...The changes in 5α-reductase (type 2 ) gene expression in the epi-didymis of puberty diabetic rats were studied by the Northern blot and Dotblot method. Rats were divided into 3 groups: the control group (C), thediabetic group (D), and the diabetic group with insulin treatment (DI).Results: The Northern blot intensity of the caput epididymis in Group D is展开更多
In recent years,the demands of high traffic transmission motivate the rapid development of wireless access techniques,and it becomes promising to design the fifth generation(5G)wireless networks.Essential requirements...In recent years,the demands of high traffic transmission motivate the rapid development of wireless access techniques,and it becomes promising to design the fifth generation(5G)wireless networks.Essential requirements for 5G involve higher traffic volume,indoor or hotspot traffic,and spectrum,energy,and cost efficien-展开更多
We study the quasinormal modes(QNMs) of massless scalar perturbations to probe the van der Waals like SBH/LBH phase transition of anti-de Sitter black holes in five-dimensional(5D) Gauss–Bonnet gravity. It is fou...We study the quasinormal modes(QNMs) of massless scalar perturbations to probe the van der Waals like SBH/LBH phase transition of anti-de Sitter black holes in five-dimensional(5D) Gauss–Bonnet gravity. It is found that the signature of this SBH/LBH phase transition is detected when the slopes of the QNMs frequency change drastically and differently in small and large black holes near the critical point. The obtained results further support that the QNMs can be a dynamic probe to investigate the thermodynamic properties in black holes.展开更多
With the increasing frequency of wireless mobile communication,dielectric materials with higher Q×f are required to enhance the signal strength of microwave passive devices and thus compensate for the rapid atten...With the increasing frequency of wireless mobile communication,dielectric materials with higher Q×f are required to enhance the signal strength of microwave passive devices and thus compensate for the rapid attenuation of high-frequency signals during propagation.In order to improve the Q×f of the MgNb2O6 system and study the internal mechanism between the structure and microwave dielectric properties,Ta5+ion is introduced to design and fabricate MgNb_(2-x)Ta_(x)O_(6)(0≤x≤0.8)ceramics by the solid-state reaction method.The single columbite phase and dense structure are observed throughout the entire composition range.All elements(Mg,Nb,Ta,and O)can be detected by X-ray photoelectron spectroscopy.Insights from the Raman spectroscopy and group theoretical analysis reveal that the Ag(2)and Ag(3)modes located at∼905 cm−1 dominate the Raman vibration.In addition,theɛr depends on the polarizability reflected by the C–M equation and Raman shift.Theτf closely relates to the bond energy of the Nb/Ta–O bond and restoring force characterized by average octahedral distortion of[Nb/TaO6].Notably,the crucial factors for the huge improvement of Q×f are clarified deeply,in terms of the lower internal strain,the reduced ordering-induced domain size,and the chemical bond valence closer to the ionic valence state,which promotes the stability of crystal structure.Moreover,the introduction of lower electronegative ions enhances the ability of electrons to compensate for oxygen vacancies,thereby reducing the dielectric loss caused by the conductance.Excellent microwave properties(ɛr=19.2,Q×f=170,000 GHz,andτf=−55.6 ppm℃–1)are achieved in MgNb1.4Ta0.6O6 ceramic,specifically a nearly 40%increase in the Q×f.This work has enriched the theory associated with low dielectric loss and provided the MgNb_(1.4)Ta_(0.6)O_(6) ceramic with a pretty high-Q×f for the application in the design of the 5G/6G wireless communication devices.展开更多
文摘Background The level of c-Myc is closely associated with high pathological grade and the poor prognosis of gliomas. Vascular endothelial growth factor (VEGF) is the most important angiogenic factor that potently stimulates the proliferation and migration of vascular endothelial cells. This study aimed to address the biological importance of c-Myc in the development of gliomas, we downregulated the expression of c-Myc in the human glioblastoma cell line IN500 and studied the in vitro effect on cellular growth, proliferation, and apoptosis and the expression of VEGF and the in vivo effect on tumor formation in a xenograft mouse model. Methods IN500A cells were stably transfected with shRNA-expressing plasmids for either c-Myc (pCMYC-shRNA) or as a control (pCtrl-shRNA). Following establishment of stable cells, the mRNA expressions of c-Myc and VEGF were examined by reverse transcription (RT)-PCR, and c-Myc and VEGF proteins by Western blotting and immunohistochemistry. Cell-cycle progression and apoptosis were determined by flow cytometry. The in vivo effect of targeting c-Myc was determined by subcutaneous injection of stable cells into immunodeficient nude mice. Results The stable transfection of pCMYC-shRNA successfully knocked down the steady-state mRNA and protein levels of c-Myc in IN500, which positively correlated with the downregulation of VEGF. Downregulating c-Myc in vitro also led to G1-S arrest and enhanced apoptosis. In vivo, targeting c-Myc reduced xenograft tumor formation and resulted in significantly smaller tumors. Conclusions c-Myc has multiple functions in glioblastoma development that include regulating cell-cycle, apoptosis, and VEGF expression. Targeting c-Myc expression may be a promising therapy for malignant glioma.
文摘Sulfide stress corrosion cracking (SSCC) behaviour of UNS G11180 steel in 5% NaCl solution with H2S was studied by slow strain rate tensile test (SSRT), SEM and electrochemical hydro gen permeation technique. The results reveal different cracking mechanism and H permeation current (IH) through UNS G11180 steel plate in different concentration of H2S solution. The susceptibility to SSCC of UNS G11180 Steel in 5% NaCl solution with H2S was evaluated by the permeation current(IH, μA), which depends on the concentration (c×10-6) of H2S by the equation:IH = 8.525 ×c0.7249. lt is proved that the electrochemical H permeation method is a practical way to assess the susceptibility to SSCC.
文摘The changes in 5α-reductase (type 2 ) gene expression in the epi-didymis of puberty diabetic rats were studied by the Northern blot and Dotblot method. Rats were divided into 3 groups: the control group (C), thediabetic group (D), and the diabetic group with insulin treatment (DI).Results: The Northern blot intensity of the caput epididymis in Group D is
文摘In recent years,the demands of high traffic transmission motivate the rapid development of wireless access techniques,and it becomes promising to design the fifth generation(5G)wireless networks.Essential requirements for 5G involve higher traffic volume,indoor or hotspot traffic,and spectrum,energy,and cost efficien-
基金Supported by the National Natural Science Foundation of China under Grant Nos 11647050,11675139 and 51575420the Scientific Research Program Funded by Shaanxi Provincial Education Department under Grant No 16JK1394
文摘We study the quasinormal modes(QNMs) of massless scalar perturbations to probe the van der Waals like SBH/LBH phase transition of anti-de Sitter black holes in five-dimensional(5D) Gauss–Bonnet gravity. It is found that the signature of this SBH/LBH phase transition is detected when the slopes of the QNMs frequency change drastically and differently in small and large black holes near the critical point. The obtained results further support that the QNMs can be a dynamic probe to investigate the thermodynamic properties in black holes.
基金supported by the National Natural Science Foundation of China(No.52172122).
文摘With the increasing frequency of wireless mobile communication,dielectric materials with higher Q×f are required to enhance the signal strength of microwave passive devices and thus compensate for the rapid attenuation of high-frequency signals during propagation.In order to improve the Q×f of the MgNb2O6 system and study the internal mechanism between the structure and microwave dielectric properties,Ta5+ion is introduced to design and fabricate MgNb_(2-x)Ta_(x)O_(6)(0≤x≤0.8)ceramics by the solid-state reaction method.The single columbite phase and dense structure are observed throughout the entire composition range.All elements(Mg,Nb,Ta,and O)can be detected by X-ray photoelectron spectroscopy.Insights from the Raman spectroscopy and group theoretical analysis reveal that the Ag(2)and Ag(3)modes located at∼905 cm−1 dominate the Raman vibration.In addition,theɛr depends on the polarizability reflected by the C–M equation and Raman shift.Theτf closely relates to the bond energy of the Nb/Ta–O bond and restoring force characterized by average octahedral distortion of[Nb/TaO6].Notably,the crucial factors for the huge improvement of Q×f are clarified deeply,in terms of the lower internal strain,the reduced ordering-induced domain size,and the chemical bond valence closer to the ionic valence state,which promotes the stability of crystal structure.Moreover,the introduction of lower electronegative ions enhances the ability of electrons to compensate for oxygen vacancies,thereby reducing the dielectric loss caused by the conductance.Excellent microwave properties(ɛr=19.2,Q×f=170,000 GHz,andτf=−55.6 ppm℃–1)are achieved in MgNb1.4Ta0.6O6 ceramic,specifically a nearly 40%increase in the Q×f.This work has enriched the theory associated with low dielectric loss and provided the MgNb_(1.4)Ta_(0.6)O_(6) ceramic with a pretty high-Q×f for the application in the design of the 5G/6G wireless communication devices.