期刊文献+
共找到125篇文章
< 1 2 7 >
每页显示 20 50 100
Synergistic Interdecadal Evolution of Precipitation over Eastern China and the Pacific Decadal Oscillation during 1951-2015
1
作者 Minmin WU Rong-Hua ZHANG +1 位作者 Junya HU Hai ZHI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第1期53-72,共20页
By using the multi-taper method(MTM)of singular value decomposition(SVD),this study investigates the interdecadal evolution(10-to 30-year cycle)of precipitation over eastern China from 1951 to 2015 and its relationshi... By using the multi-taper method(MTM)of singular value decomposition(SVD),this study investigates the interdecadal evolution(10-to 30-year cycle)of precipitation over eastern China from 1951 to 2015 and its relationship with the North Pacific sea surface temperature(SST).Two significant interdecadal signals,one with an 11-year cycle and the other with a 23-year cycle,are identified in both the precipitation and SST fields.Results show that the North Pacific SST forcing modulates the precipitation distribution over China through the effects of the Pacific Decadal Oscillation(PDO)-related anomalous Aleutian low on the western Pacific subtropical high(WPSH)and Mongolia high(MH).During the development stage of the PDO cold phase associated with the 11-year cycle,a weakened WPSH and MH increased the precipitation over the Yangtze River Basin,whereas an intensified WPSH and MH caused the enhanced rain band to move northward to North China during the decay stage.During the development stage of the PDO cold phase associated with the 23-year cycle,a weakened WPSH and MH increased the precipitation over North China,whereas an intensified WPSH and the weakened MH increased the precipitation over South China during the decay stage.The 11-year and 23-year variabilities contribute differently to the precipitation variations in the different regions of China,as seen in the 1998flooding case.The 11-year cycle mainly accounts for precipitation increases over the Yangtze River Basin,while the 23-year cycle is responsible for the precipitation increase over Northeast China.These results have important implications for understanding how the PDO modulates the precipitation distribution over China,helping to improve interdecadal climate prediction. 展开更多
关键词 MTM-SVD PDO SST anomalies interdecadal variability precipitation over China
下载PDF
Influence of the Atlantic Multidecadal Oscillation and Interdecadal Pacific Oscillation on Antarctic surface air temperature during 1900 to 2015
2
作者 Cuijuan Sui Lejiang Yu +2 位作者 Alexey YuKarpechko Licheng Feng Shan Liu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第3期48-58,共11页
The importance of the Atlantic Multidecadal Oscillation(AMO)and Interdecadal Pacific Oscillation(IPO)in influencing zonally asymmetric changes in Antarctic surface air temperature(SAT)has been established.However,prev... The importance of the Atlantic Multidecadal Oscillation(AMO)and Interdecadal Pacific Oscillation(IPO)in influencing zonally asymmetric changes in Antarctic surface air temperature(SAT)has been established.However,previous studies have primarily concentrated on examining the combined impact of the contrasting phases of the AMO and IPO,which have been dominant since the advent of satellite observations in 1979.This study utilizes long-term reanalysis data to investigate the impact of four combinations of+AMO+IPO,–AMO–IPO,+AMO–IPO,and–AMO+IPO on Antarctic SAT over the past 115 years.The+AMO phase is characterized by a spatial mean temperature amplitude of up to 0.5℃over the North Atlantic Ocean,accompanied by positive sea surface temperature(SST)anomalies in the tropical eastern Pacific and negative SST anomalies in the extratropical-mid-latitude western Pacific,which are indicative of the+IPO phase.The Antarctic SAT exhibits contrasting spatial patterns during the+AMO+IPO and+AMO–IPO periods.However,during the–AMO+IPO period,apart from the Antarctic Peninsula and the vicinity of the Weddell Sea,the entire Antarctic region experiences a warming trend.The most pronounced signal in the SAT anomalies is observed during the austral autumn,whereas the combination of–AMO and–IPO exhibits the smallest magnitude across all the combinations.The wavetrain excited by the SST anomalies associated with the AMO and IPO induces upper-level and surface atmospheric circulation anomalies,which alter the SAT anomalies.Furthermore,downward longwave radiation anomalies related to anomalous cloud cover play a crucial role.In the future,if the phases of AMO and IPO were to reverse(AMO transitioning to a negative phase and IPO transitioning to a positive phase),Antarctica could potentially face more pronounced warming and accelerated melting compared to the current observations. 展开更多
关键词 Atlantic Multidecadal Oscillation(AMO) interdecadal Pacific Oscillation(IPO) surface air temperature ANTARCTIC wavetrain Rossby wave source
下载PDF
Interdecadal Variations of the March Atmospheric Heat Source over the Southeast Asian Low-Latitude Highlands
3
作者 Dayong WEN Jie CAO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第9期1584-1596,共13页
Based on the fifth-generation reanalysis dataset from the European Centre for Medium-Range Weather Forecasts for 1979–2019,we investigated the effects of the circumglobal teleconnection(CGT)on the interdecadal variat... Based on the fifth-generation reanalysis dataset from the European Centre for Medium-Range Weather Forecasts for 1979–2019,we investigated the effects of the circumglobal teleconnection(CGT)on the interdecadal variation of the March atmospheric heat source(AHS)over the Southeast Asian low-latitude highlands(SEALLH).The dominant mode of the March AHS over the SEALLH features a monopole structure with an 8–11-year period.Decadal variations in the AHS make an important contribution to the 11-year low-pass filtered component of the AHS index,whichexplains 54.3%of the total variance.The CGT shows a clear interdecadal variation,which explains 59.3%of the total variance.The March AHS over the SEALLH is significantly related to the CGT on interdecadal timescales.When the CGT is optimally excited by a significant cyclonic vorticity source near northern Africa(i.e.,in its positive phase),the SEALLH is dominated by anomalous southerly winds and ascending motions on the east of the anomalous cyclone.The enhanced advection and upward transfer result in a high-enthalpy air mass that converges into and condenses over the SEALLH,leading to a largerthan-average March AHS over this region.The key physical processes revealed by this diagnostic analysis are supported by numerical experiments. 展开更多
关键词 interdecadal variation atmospheric heat source circumglobal teleconnection low-latitude highlands Rossby wave source
下载PDF
An Interdecadal Change in the Influence of the NAO on Atlantic-Induced Arctic Daily Warming around the Mid-1980s
4
作者 Cen WANG Baohua REN +3 位作者 Gen LI Jianqiu ZHENG Linwei JIANG Di XU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第7期1285-1297,共13页
After approaching 0℃owing to an Atlantic storm at the end of 2015,the Arctic temperature approached freezing again in 2022,indicating that Arctic daily warming events remain a concern.The NCEP/NCAR Reanalysis dataset... After approaching 0℃owing to an Atlantic storm at the end of 2015,the Arctic temperature approached freezing again in 2022,indicating that Arctic daily warming events remain a concern.The NCEP/NCAR Reanalysis dataset was used to investigate the influence of the NAO on the Arctic winter daily warming events induced by Atlantic storms,known as the Atlantic pattern-Arctic Rapid Tropospheric Daily Warming(Atlantic-RTDW)event.Atlantic-RTDW events are triggered by Atlantic storms that transport warm and humid air masses moving into the Arctic.Furthermore,an interdecadal change in the influence of NAO on Atlantic-RTDW-event frequency was observed around the mid-1980s.Specifically,before the mid-1980s(pre-transition period),500-hPa southerly(northerly)wind anomalies occupied the North Atlantic(NA)in the positive(negative)phase of NAO,which increased(decreased)the Atlantic-RTDW events occurrence by steering Atlantic storms into(away from)the Arctic;thus,the NAO could potentially influence the Atlantic-RTDW-event frequency.However,the relationship between the NAO and the Atlantic-RTDW-event frequency has weakened since the mid-1980s(post-transition period).In the post-transition period,such 500-hPa southerly(northerly)wind anomalies over the NA hardly existed in the positive(negative)phase of NAO,which was attributed to a stronger Atlantic Storm Track(AST)activity intensity than that in the pre-transition period.During this period,the strong AST induced an enhanced NAOrelated cyclone via transient eddy-mean flow interactions,resulting in the disappearance of southerly and northerly wind anomalies over the NA. 展开更多
关键词 Arctic daily warming NAO interdecadal change Atlantic storm track transient eddy-mean flow interactions
下载PDF
Interdecadal Enhancement in the Relationship between the Western North Pacific Summer Monsoon and Sea Surface Temperature in the Tropical Central-Western Pacific after the Early 1990s
5
作者 Kui LIU Lian-Tong ZHOU +1 位作者 Zhibiao WANG Yong LIU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第10期1766-1782,共17页
This study reveals the strengthened interdecadal relationship between the western North Pacific summer monsoon(WNPSM)and tropical central-western Pacific sea surface temperature anomaly(SSTA)in summer after the early ... This study reveals the strengthened interdecadal relationship between the western North Pacific summer monsoon(WNPSM)and tropical central-western Pacific sea surface temperature anomaly(SSTA)in summer after the early 1990s.In the first period(1979–91,P1),the WNPSM-related precipitation anomaly and horizontal wind anomaly present themselves as an analogous Pacific-Japan(PJ)-like pattern,generally considered to be related to the Niño-3 index in the preceding winter.During the subsequent period(1994–2019,P2),the WNPSM-related precipitation anomaly presents a zonal dipole pattern,correlated significantly with the concurrent SSTA in the Niño-4 and tropical western Pacific regions.The negative(positive)SSTA in the tropical western Pacific and positive(negative)SSTA in the Niño-4 region,could work together to influence the WNPSM,noting that the two types of anomalous SSTA configurations enhance(weaken)the WNPSM by the positive(negative)phase PJ-like wave and Gill response,respectively,with an anomalous cyclone(anticyclone)located in the WNPSM,which shows obvious symmetry about the anomalous circulation.Specifically,the SSTA in Niño-4 impacts the WNPSM by an atmospheric Gill response,with a stronger(weaker)WNPSM along with a positive(negative)SSTA in the Niño-4 region.Furthermore,the SSTA in the tropical western Pacific exerts an influence on the WNPSM by a PJ-like wave,with a stronger(weaker)WNPSM along with a negative(positive)SSTA in the tropical western Pacific.In general,SSTAs in the tropical western Pacific and Niño-4 areas could work together to exert influence on the WNPSM,with the effect most likely to occur in the El Niño(La Niña)developing year in P2.However,the SSTAs in the tropical western Pacific worked alone to exert an influence on the WNPSM mainly in 2013,2014,2016,and 2017,and the SSTAs in the Niño-4 region worked alone to exert an influence on the WNPSM mainly in Central Pacific(CP)La Niña developing years.The sensitivity experiments also can reproduce the PJ-like wave/Gill response associated with SSTA in the tropical western Pacific/Niño-4 regions.Therefore,the respective and synergistic impacts from the Niño-4 region and the tropical western Pacific on the WNPSM have been revealed,which helps us to acquire a better understanding of the interdecadal variations of the WNPSM and its associated climate influences. 展开更多
关键词 western North Pacific summer monsoon tropical central-western Pacific SST interdecadal change
下载PDF
Asymmetry of Salinity Variability in the Tropical Pacific during Interdecadal Pacific Oscillation Phases
6
作者 Hai ZHI Zihui YANG +4 位作者 Rong-Hua ZHANG Pengfei LIN Jifeng QI Yu HUANG Meng DONG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第7期1269-1284,共16页
It has been recognized that salinity variability in the tropical Pacific is closely related to the Interdecadal Pacific Oscillation(IPO).Here,we use model simulations from 1900 to 2017 to illustrate obvious asymmetrie... It has been recognized that salinity variability in the tropical Pacific is closely related to the Interdecadal Pacific Oscillation(IPO).Here,we use model simulations from 1900 to 2017 to illustrate obvious asymmetries of salinity variability in the tropical Pacific during positive and negative IPO phases.The amplitude of salinity variability in the tropical Pacific during positive IPO phases is larger than that during negative IPO phases,with a more westward shift of a large Sea Surface Salinity(SSS)anomaly along the equator.Salinity budget analyses show that the asymmetry of salinity variability during positive and negative IPO phases is dominated by the difference in the surface forcing associated with the freshwater flux[FWF,precipitation(P)minus evaporation(E)],with a contribution of 40%–50%near the dateline on the equator.Moreover,the relationships between the salinity variability and its budget terms also show differences in their leadlag correlations during positive and negative IPO phases.These differences in salinity variability during different IPO phases produce asymmetric effects on seawater density which can reduce or enhance upper-ocean stratification.Therefore,the salinity effects may modulate the intensity of El Nino-Southern Oscillation(ENSO),resulting in an enhanced(reduced)El Nino but a reduced(enhanced)La Ni?a during positive(negative)IPO phases by 1.6℃psu^(-1)(1.3℃psu^(-1)),respectively.It is suggested that the asymmetry of salinity variability may be related to the recent change in ENSO amplitude associated with the IPO,which can help elucidate ENSO diversity. 展开更多
关键词 salinity variability asymmetry upper-ocean stratification interdecadal Pacfic Oscillation tropical Pacific
下载PDF
Interdecadal Change in the Interannual Variability of South China Sea Summer Monsoon Intensity
7
作者 周明颉 简茂球 高斯 《Journal of Tropical Meteorology》 SCIE 2023年第3期312-323,共12页
The interdecadal change in the interannual variability of the South China Sea summer monsoon(SCSSM)intensity and its mechanism are investigated in this study.The interannual variability of the low-level circulation of... The interdecadal change in the interannual variability of the South China Sea summer monsoon(SCSSM)intensity and its mechanism are investigated in this study.The interannual variability of the low-level circulation of the SCSSM has experienced a significant interdecadal enhancement around the end of the 1980s,which may be attributed to the interdecadal changes in the evolution of the tropical Indo-Pacific sea surface temperature(SST)anomalies and their impacts on the SCSSM.From 1961 to 1989,the low-level circulation over the South China Sea is primarily affected by the SST anomalies in the tropical Indian Ocean via the mechanism of Kelvin-wave-induced Ekman divergence.While in 1990 to 2020,the impacts of the summer SST anomalies in the Maritime Continent and the equatorial central to eastern Pacific on the SCSSM are enhanced,via anomalous meridional circulation and Mastuno-Gill type Rossby wave atmospheric response,respectively.The above interdecadal changes are closely associated with the interdecadal changes in the evolution of El Niño–Southern Oscillation(ENSO)events.The interdecadal variation of the summer SST anomalies in the developing and decaying phases of ENSO events enhances the influence of the tropical Indo-Pacific SST on the SCSSM,resulting in the interdecadal change in the interannual variability of the SCSSM. 展开更多
关键词 South China Sea summer monsoon interannual variability interdecadal change Indo-Pacific Ocean sea surface temperature
下载PDF
Interdecadal Enhancement of the Walker Circulation over the Tropical Pacific in the Late 1990s 被引量:5
8
作者 Buwen DONG 陆日宇 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第2期247-262,共16页
The Walker circulation is one of the major components of the large-scale tropical atmospheric circulation and variations in its strength are critical to equatorial Pacific Ocean circulation. It has been argued in the ... The Walker circulation is one of the major components of the large-scale tropical atmospheric circulation and variations in its strength are critical to equatorial Pacific Ocean circulation. It has been argued in the literature that during the 20th century the Walker circulation weakened, and that this weakening was attributable to anthropogenic climate change. By using updated observations, we show that there has been a rapid interdecadal enhancement of the Walker circulation since the late 1990s. Associated with this enhancement is enhanced precipitation in the tropical western Pacific, anomalous westerlies in the upper troposphere, descent in the central and eastern tropical Pacific, and anomalous surface easterlies in the western and central tropical Pacific. The characteristics of associated oceanic changes are a strengthened thermocline slope and an enhanced zonal SST gradient across the tropical Pacific. Many characteristics of these changes are similar to those associated with the mid-1970s climate shift with an opposite sign. We also show that the interdecadal variability of the Walker circulation in the tropical Pacific is inversely correlated to the interdecadal variability of the zonal circulation in the tropical Atlantic. An enhancement of the Walker circulation in the tropical Pacific is associated with a weakening zonal circulation in the tropical Atlantic and vise versa, implying an inter-Atlantic-Pacific connection of the zonal overturning circulation variation. Whether these recent changes will be sustained is not yet clear, but our research highlights the importance of understanding the interdecadal variability, as well as the long-term trends, that influence tropical circulation. 展开更多
关键词 Walker circulation interdecadal change interdecadal Pacific Oscillation late 1990s
下载PDF
Interdecadal Variability of Temperature and Precipitation in China since 1880 被引量:36
9
作者 王绍武 朱锦红 蔡静宁 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2004年第3期307-313,共7页
Reconstruction of a homogeneous temperature and precipitation series for China is crucial for a proper understanding of climate change over China. The annual mean temperature anomaly series of ten regions are found fr... Reconstruction of a homogeneous temperature and precipitation series for China is crucial for a proper understanding of climate change over China. The annual mean temperature anomaly series of ten regions are found from 1880 to 2002. Positive anomalies over China during the 1920s and 1940s are noticeable. The linear trend for the period of 1880-2002 is 0.58℃(100a)-1, which is a little less than the global mean (0.60℃ (100a)-1). 1998 was the warmest year in China since 1880, which is in agreement with the estimation of the global mean temperature. The mean precipitation on a national scale depends mainly on the precipitation over East China. Variations of precipitation in West China show some characteristics which are independent of those in the east. However, the 1920s was the driest decade not only for the east, but also for eastern West China during the last 120 years. The most severe drought on a national scale occurred in 1928. Severe droughts also occurred in 1920, 1922, 1926, and 1929 in North China. It is noticeable that precipitation over East China was generally above normai in the 1950s and 1990s; severe floods along the Yangtze River in 1954, 1991, and 1998 only occurred in these two wet decades. An increasing trend in precipitation variations is observed during the second half of the 20th century in West China, but a similar trend is not found in East China, where the 20- to 40-year periodicities are predominant in the precipitation variations. 展开更多
关键词 interdecadal variability TEMPERATURE PRECIPITATION China
下载PDF
Possible Impacts of the Arctic Oscillation on the Interdecadal Variation of Summer Monsoon Rainfall in East Asia 被引量:40
10
作者 琚建华 吕俊梅 +1 位作者 曹杰 任菊章 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第1期39-48,共10页
The influences of the wintertime AO (Arctic Oscillation) on the interdecadal variation of summer monsoon rainfall in East Asia were examined. An interdecadal abrupt change was found by the end of the 1970s in the vari... The influences of the wintertime AO (Arctic Oscillation) on the interdecadal variation of summer monsoon rainfall in East Asia were examined. An interdecadal abrupt change was found by the end of the 1970s in the variation of the AO index and the leading principal component time series of the summer rainfall in East Asia. The rainfall anomaly changed from below normal to above normal in central China, the southern part of northeastern China and the Korean peninsula around 1978. However, the opposite interdecadal variation was found in the rainfall anomaly in North China and South China. The interdecadal variation of summer rainfall is associated with the weakening of the East Asia summer monsoon circulation. It is indicated that the interdecadal variation of the AO exerts an influence on the weakening of the monsoon circulation. The recent trend in the AO toward its high-index polarity during the past two decades plays important roles in the land-sea contrast anomalies and wintertime precipitation anomaly. The mid- and high-latitude regions of the Asian continent are warming, while the low-latitude regions are cooling in winter and spring along with the AO entering its high-index polarity after the late 1970s. In the meantime, the precipitation over the Tibetan Plateau and South China is excessive, implying an increase of soil moisture. The cooling tendency of the land in the southern part of Asia will persist until summer because of the memory of soil moisture. So the warming of the Asian continent is relatively slow in summer. Moreover, the Indian Ocean and Pacific Ocean, which are located southward and eastward of the Asian land, are warming from winter to summer. This suggests that the contrast between the land and sea is decreased in summer. The interdecadal decrease of the land-sea heat contrast finally leads to the weakening of the East Asia summer monsoon circulation. 展开更多
关键词 the Arctic Oscillation interdecadal variation summer monsoon rainfall land-sea heat contrast
下载PDF
Interdecadal Change in Extreme Precipitation over South China and Its Mechanism 被引量:20
11
作者 宁亮 钱永甫 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第1期109-118,共10页
Based on the daily precipitation data taken from 17 stations over South China during the period of 1961 2003, a sudden change in summer extreme precipitation events over South China in the early 1990s along with the p... Based on the daily precipitation data taken from 17 stations over South China during the period of 1961 2003, a sudden change in summer extreme precipitation events over South China in the early 1990s along with the possible mechanism connected with the anomalies of the latent heat flux over the South China Sea and the sensible heat flux over the Indochina peninsula are examined. The results show that both the annual and summer extreme precipitation events have obvious interdecadal variations and have increased significantly since the early 1990s. Moreover, the latent heat flux over the South China Sea and the sensible heat flux over the Indochina peninsula also have obvious interdecadal variations consistent with that of the extreme precipitation, and influence different months' extreme precipitation, respectively. Their effects are achieved by the interdecadal increases of the strengthening convection over South China through the South China Sea Summer Monsoon. 展开更多
关键词 extreme precipitation interdecadal change South China sensible heat flux latent heat flux
下载PDF
Atmospheric Anomalies Related to Interdecadal Variability of SST in the North Pacific 被引量:26
12
作者 李崇银 咸鹏 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2003年第6期859-874,共16页
Anomalous patterns of the atmospheric circulation and climate are studied corresponding to the two basic interdecadal variation modes of sea surface temperature (SST) in the North Pacific, namely, the 25-35-year mode ... Anomalous patterns of the atmospheric circulation and climate are studied corresponding to the two basic interdecadal variation modes of sea surface temperature (SST) in the North Pacific, namely, the 25-35-year mode and the 7-10-year mode. Results clearly indicate that corresponding to the positive and negative phases of the interdecadal modes of SST anomaly (SSTA) in the North Pacific, the anomalous patterns of the atmospheric circulation and climate are approximately out of phase, fully illustrating the important role of the interdecadal modes of SST. Since the two interdecadal modes of SSTA in the North Pacific have similar horizontal structures, their impacts on the atmospheric circulation and climate are also analogous. The impact of the interdecadal modes of the North Pacific SST on the atmospheric circulation is barotropic at middle latitudes and baroclinic in tropical regions. 展开更多
关键词 anomaly of atmospheric circulation and climate North Pacific sea surface temperature interdecadal mode
下载PDF
A Review of Decadal/Interdecadal Climate Variation Studies in China 被引量:22
13
作者 李崇银 何金海 朱锦红 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2004年第3期425-436,共12页
Decadal/interdecadal climate variability is an important element in the CLIVAR (Climate Variability and Predictability) and has received much attention in the world. Many studies in relation to interdecadal variation ... Decadal/interdecadal climate variability is an important element in the CLIVAR (Climate Variability and Predictability) and has received much attention in the world. Many studies in relation to interdecadal variation have also been completed by Chinese scientists in recent years. In this paper, an introduction in outline for interdecadal climate variation research in China is presented. The content includes the features of interdecadal climate variability in China, global warming and interdecadal temperature variability, the NAO (the North Atlantic Oscillation)/NPO (the North Pacific Oscillation) and interdecadal climate variation in China, the interdecadal variation of the East Asian monsoon, the interdecadal mode of SSTA (Sea Surface Temperature Anomaly) in the North Pacific and its climate impact, and abrupt change feature of the climate. 展开更多
关键词 decadal/interdecadal climate variation abrupt change east-Asian monsoon sea surface temperature anomaly
下载PDF
The Recent Interdecadal and Interannual Variation of Water Vapor Transport over Eastern China 被引量:18
14
作者 孙博 祝亚丽 王会军 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第5期1039-1048,共10页
The climatological characteristics and interdecadal variability of the water vapor transport and budget over the Yellow River-Huaihe River valleys (YH1) and the Yangtze River-Huaihe River valleys (YH2) of East Chi... The climatological characteristics and interdecadal variability of the water vapor transport and budget over the Yellow River-Huaihe River valleys (YH1) and the Yangtze River-Huaihe River valleys (YH2) of East China were investigated in this study,using the NCEP/NCAR monthly mean reanalysis datasets from 1979 to 2009.Changes in the water vapor transport pattern occurred during the late 1990s over YH1 (YH2) that corresponded with the recent interdecadal changes in the eastern China summer precipitation pattern.The net moisture influx in the YH1 increased and the net moisture influx in the YH2 decreased during 2000-2009 in comparison to 1979-1999.Detailed features in the moisture flux and transport changes across the four boundaries were explored.The altered water vapor transport over the two domains can be principally attributed to the additive effects of the changes in the confluent southwesterly moisture flow by the Indian summer monsoon and East Asian summer monsoon (related with the eastward recession of the western Pacific subtropical high).The altered water vapor transport over YH1 was also partly caused by the weakened midlatitude westerlies. 展开更多
关键词 water vapor transport interdecadal variability summer monsoon midlatitude westerlies
下载PDF
A Possible Linkage in the Interdecadal Variability of Rainfall over North China and the Sahel 被引量:17
15
作者 任保华 陆日宇 肖子牛 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2004年第5期699-707,共9页
The instrumental records of precipitation, including some historical documentary evidence, show that the rainfall in North China during the rainy season (July and August) exhibits an interdecadal variability similar t... The instrumental records of precipitation, including some historical documentary evidence, show that the rainfall in North China during the rainy season (July and August) exhibits an interdecadal variability similar to the Sahelian rainfall. Both these areas exhibited a weak interdecadal rainfall variability prior to the 1950s, and experienced a long-lasting drought since the 1960s, with two rainfall decreasing transitions, one around the year 1965 and another in the late 1970s. NCEP/NCAR reanalysis data are used to analyze the associated changes in atmospheric circulation during the second decrease transition. The changes of local atmospheric circulation at the end of the 1970s, at both lower and upper levels, contribute to the less precipitation in North China and the Sahel. 展开更多
关键词 North China the Sahel RAINFALL interdecadal variability
下载PDF
Interdecadal Variability of the East Asian Summer Monsoon in an AGCM 被引量:15
16
作者 韩晋平 王会军 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第5期808-818,共11页
It is well known that significant interdecadal variation of the East Asian summer monsoon (EASM) occurred around the end of the 1970s. Whether these variations can be attributed to the evolution of global sea surfac... It is well known that significant interdecadal variation of the East Asian summer monsoon (EASM) occurred around the end of the 1970s. Whether these variations can be attributed to the evolution of global sea surface temperature (SST) and sea ice concentration distribution is investigated with an atmospheric general circulation model (AGCM). The model is forced with observed monthly global SST and sea ice evolution through 1958-1999. A total of four integrations starting from different initial conditions are carried out. It is found that only one of these reproduces the observed interdecadal changes of the EASM after the 1970s, including weakened low-level meridional wind, decreased surface air temperature and increased sea level pressure in central China, as well as the southwestward shift of the western Pacific subtropical high ridge and the strengthened 200-hPa westerlies. This discrepancy among these simulated results suggests that the interdecadal variation of the EASM cannot be accounted for by historical global SST and sea ice evolution. Thus, the possibility that the interdecadal timescale change of monsoon is a natural variability of the coupled climate system evolution cannot be excluded. 展开更多
关键词 global sea surface temperature sea ice East Asian summer monsoon interdecadal change
下载PDF
Decadal/Interdecadal Variations of the Ocean Temperature and its Impacts on Climate 被引量:13
17
作者 李崇银 周文 +1 位作者 贾小龙 王鑫 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第6期964-981,共18页
Decadal/interdecadal climate variability is an important research focus of the CLIVAR Program and has been paid more attention. Over recent years, a lot of studies in relation to interdecadal climate variations have b... Decadal/interdecadal climate variability is an important research focus of the CLIVAR Program and has been paid more attention. Over recent years, a lot of studies in relation to interdecadal climate variations have been also completed by Chinese scientists. This paper presents an overview of some advances in the study of decadal/interdecadal variations of the ocean temperature and its climate impacts, which includes interdccadal climate variability in China, the interdecadal modes of sea surface temperature (SST) anomalies in the North Pacific, and in particular, the impacts of interdecadal SST variations on the Asian monsoon rainfall. As summarized in this paper, some results have been achieved by using climate diagnostic studies of historical climatic datasets. Two fundamental interdecadal SST variability modes (7- 10-years mode and 25 35-years mode) have been identified over the North Pacific associated with different anomalous patterns of atmospheric circulation. The southern Indian Ocean dipole (SIOD) shows a major feature of interdecadal variation, with a positive (negative) phase favoring a weakened (enhanced) Asian summer monsoon in the following summer. It is also found that the China monsoon rainfall exhibits interdecadal variations with more wet (dry) monsoon years in the Yangtze River (South China and North China) before 1976, but vice versa after 1976. The weakened relationship between the Indian summer rainfall and ENSO is a feature of interdecadal variations, suggesting an important role of the interdecadal variation of the SIOD in the climate over the south Asia and southeast Asia. In addition, evidence indicates that the climate shift in the 1960s may be related to the anomalies of the North Atlantic Oscillation (NAO) and North Pacific Oscillation (NPO). Overall, the present research has improved our understanding of the decadal/interdecadal variations of SST and their impacts on the Asian monsoon rainfall. However, the research also highlights a number of problems for future research, in particular the mechanisms responsible for the monsoon long4erm predictability, which is a great challenge in climate research. 展开更多
关键词 decadal/interdecadal variation climate change Southern Indian Ocean dipole monsoonrainfall
下载PDF
Interdecadal Variability of the East Asian Summer Monsoon and Associated Atmospheric Circulations 被引量:14
18
作者 曾刚 孙照渤 +1 位作者 Wei-Chyung WANG 闵锦忠 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第5期915-926,共12页
Based on the National Centers for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) reanalysis data from 1950-1999, interdecadal variability of the East Asian Summer Monsoon (EASM) ... Based on the National Centers for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) reanalysis data from 1950-1999, interdecadal variability of the East Asian Summer Monsoon (EASM) and its associated atmospheric circulations are investigated. The EASM exhibits a distinct interdecadal variation, with stronger (weaker) summer monsoon maintained from 1950-1964 (1976-1997). In the former case, there is an enhanced Walker cell in the eastern Pacific and an anti-Walker cell in the western Pacific. The associated ascending motion resides in the central Pacific, which flows eastward and westward in the upper troposphere, descending in the eastern and western ends of the Pacific basin. At the same time, an anomalous East Asian Hadley Cell (EAHC) is found to connect the low-latitude and mid-latitude systems in East Asia, which strengthens the EASM. The descending branch of the EAHC lies in the west part of the anti-Walker cell, flowing northward in the lower troposphere and then ascending at the south of Lake Baikal (40°-50°N, 95°- 115°E) before returning to low latitudes in the upper troposphere, thus strengthening the EASM. The relationship between the EASM and SST in the eastern tropical Pacific is also discussed. A possible mechanism is proposed to link interdecadal variation of the EASM with the eastern tropical Pacific SST. A warmer sea surface temperature anomaly (SSTA) therein induces anomalous ascending motion in the eastern Pacific, resulting in a weaker Walker cell, and at the same time inducing an anomalous Walker cell in the western Pacific and an enhanced EAHC, leading to a weaker EASM. Furthermore, the interdecadal variation of summer precipitation over North China is found to be the south of Lake Baikal through enhancing and reducing strongly regulated by the velocity potential over the regional vertical motions. 展开更多
关键词 East Asian summer monsoon interdecadal variability Walker circulation East Asian Hadley circulation
下载PDF
Interdecadal Change in the Connection Between Hadley Circulation and Winter Temperature in East Asia 被引量:12
19
作者 周波涛 王会军 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2008年第1期24-30,共7页
Based on NCEP/NCAR reanalysis data, the interdecadal variability of Hadley circulation (HC) and its association with East Asian temperature in winter are investigated. Results indicate that the Northern Hemisphere w... Based on NCEP/NCAR reanalysis data, the interdecadal variability of Hadley circulation (HC) and its association with East Asian temperature in winter are investigated. Results indicate that the Northern Hemisphere winter HC underwent apparent change in the 1970s, with transition occurring around 1976/77. Along with interdecadal variability of HC, its linkage to surface air temperature (SAT) in East Asia also varied decadally, from weak relations to strong relations. Such a change may be related to the interaction between HC and the atmospheric circulation system over the Philippines, which is associated with the East Asian winter monsoon (EAWM). Before the 1970s, the connection between HC and the anticyclonic circulation around the Philippines was insignificant, but after the late 1970s their linkage entered a strong regime. The intensification of this connection may therefore be responsible for the strong relations between HC and East Asian winter temperatures after the late 1970s. 展开更多
关键词 Hadley circulation East Asian temperature interdecadal change anticyclonic circulation Philippines
下载PDF
The NPO/ NAO and Interdecadal Climate Variation in China 被引量:12
20
作者 李崇银 李桂龙 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2000年第4期555-561,共7页
This article discusses the interannual variation of the North Atlantic Oscillation (NAO) and North Pacific Oscillation (NPO), its relationship with the interdecadal climate variation in China which is associated with ... This article discusses the interannual variation of the North Atlantic Oscillation (NAO) and North Pacific Oscillation (NPO), its relationship with the interdecadal climate variation in China which is associated with the climate jump in the Northern Hemisphere in the 1960’s, using the data analyses. It is clearly shown that both the amplitudes of the NAO and NPO increase obviously in the 1960’s and the main period of the oscillations changes from 3-4 years before the 1960’s to 8–15 years after the 1960’s. Therefore, interdecadal climate variation in China or the climate jump in the 1960’s is closely related to the anomalies of the NAO and NPO. Key words North Atlantic Oscillation (NAO) - North Pacific Oscillation (NPO) - Climate Jump - Interdecadal climate variation This work was supported by National Key Basic Science Program in China (G1998040903), Chinese Academy of Science and the National Natural Science Fundation of China (Grant No.49823002).The authors are also grateful to Ms. Wang Xuan for typing the manuscript. 展开更多
关键词 North Atlantic Oscillation (NAO) North Pacific Oscillation (NPO) Climate Jump interdecadal climate variation
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部