为提高浮动车数据中异常数据检测能力及不同载客状态下的模型检测分析能力,提出基于S-DTA-IIForest(Summation&Difference Third Order Average&Improvement-Isolation Forest)的浮动车数据异常检测算法。构建由相邻两项求和(S...为提高浮动车数据中异常数据检测能力及不同载客状态下的模型检测分析能力,提出基于S-DTA-IIForest(Summation&Difference Third Order Average&Improvement-Isolation Forest)的浮动车数据异常检测算法。构建由相邻两项求和(S)、三阶求和平均差分(DTA)的二维度空间SDTA特征向量;提出差额累计更新和动态区分辨识的改进孤立森林IIForest算法,通过设置停止阈值参数,避免当出现新样本异常值分数大于停止阈值时,仅更新样本不更新孤立森林模型的问题,设计每个二叉树区分辨识度参数,区分辨识度位于停止区间时停止二叉树生长,提高算法收敛性能,以ROC(Receiver Operating Characteristic)曲线下面积AUC(Area Under ROC Cure)、F1-score为指标对模型精度进行对比分析,并以重庆市中心城区学府大道开展实例验证。结果表明:本文S-DTA-IIForest组合算法AUC、F1-score分别为86.63%、0.89,AUC较传统孤立森林IForest(Isolation Forest)提高32.4%,运行效率提高1.29%,具有收敛速度更快、精度更高的优势,载客条件下模型AUC、F1-score较未载客分别提高7.7%、10.8%,组合算法对载客数据有更高的检测精度,且未载客状态数据异常率较载客状态增加71.4%,未载客数据异常率更高。展开更多
基于Transformer的车道预测LSTR(Lane Shape Prediction with Transformers)算法在检测车道线时存在缺少捕捉局部特征的能力和多头注意力机制中头数多余的问题.本文提出了改进LSTR算法的车道线检测方法,首先在最后一个编码器中前馈网络...基于Transformer的车道预测LSTR(Lane Shape Prediction with Transformers)算法在检测车道线时存在缺少捕捉局部特征的能力和多头注意力机制中头数多余的问题.本文提出了改进LSTR算法的车道线检测方法,首先在最后一个编码器中前馈网络的后面引入CBAM(Convolutional Block Attention Module)注意力机制模块,充分利用通道和空间上的信息,捕捉特征图中更多的细节;然后对解码器中的掩码多头注意力机制进行剪枝,使用掩码单头注意力机制来进行替换,以便更多关注前一时刻的车道线信息.改进后的LSTR算法在TuSimple数据集上准确度为96.31%,明显高于PolyLaneNet(Lane Estimation via Deep Polynomial Regression)等算法,在CULane数据集上比原始算法的F1评分上升了2.11%.展开更多
文摘为提高浮动车数据中异常数据检测能力及不同载客状态下的模型检测分析能力,提出基于S-DTA-IIForest(Summation&Difference Third Order Average&Improvement-Isolation Forest)的浮动车数据异常检测算法。构建由相邻两项求和(S)、三阶求和平均差分(DTA)的二维度空间SDTA特征向量;提出差额累计更新和动态区分辨识的改进孤立森林IIForest算法,通过设置停止阈值参数,避免当出现新样本异常值分数大于停止阈值时,仅更新样本不更新孤立森林模型的问题,设计每个二叉树区分辨识度参数,区分辨识度位于停止区间时停止二叉树生长,提高算法收敛性能,以ROC(Receiver Operating Characteristic)曲线下面积AUC(Area Under ROC Cure)、F1-score为指标对模型精度进行对比分析,并以重庆市中心城区学府大道开展实例验证。结果表明:本文S-DTA-IIForest组合算法AUC、F1-score分别为86.63%、0.89,AUC较传统孤立森林IForest(Isolation Forest)提高32.4%,运行效率提高1.29%,具有收敛速度更快、精度更高的优势,载客条件下模型AUC、F1-score较未载客分别提高7.7%、10.8%,组合算法对载客数据有更高的检测精度,且未载客状态数据异常率较载客状态增加71.4%,未载客数据异常率更高。
文摘基于Transformer的车道预测LSTR(Lane Shape Prediction with Transformers)算法在检测车道线时存在缺少捕捉局部特征的能力和多头注意力机制中头数多余的问题.本文提出了改进LSTR算法的车道线检测方法,首先在最后一个编码器中前馈网络的后面引入CBAM(Convolutional Block Attention Module)注意力机制模块,充分利用通道和空间上的信息,捕捉特征图中更多的细节;然后对解码器中的掩码多头注意力机制进行剪枝,使用掩码单头注意力机制来进行替换,以便更多关注前一时刻的车道线信息.改进后的LSTR算法在TuSimple数据集上准确度为96.31%,明显高于PolyLaneNet(Lane Estimation via Deep Polynomial Regression)等算法,在CULane数据集上比原始算法的F1评分上升了2.11%.