期刊文献+
共找到2,032篇文章
< 1 2 102 >
每页显示 20 50 100
An Intelligent SDN-IoT Enabled Intrusion Detection System for Healthcare Systems Using a Hybrid Deep Learning and Machine Learning Approach 被引量:1
1
作者 R Arthi S Krishnaveni Sherali Zeadally 《China Communications》 SCIE CSCD 2024年第10期267-287,共21页
The advent of pandemics such as COVID-19 significantly impacts human behaviour and lives every day.Therefore,it is essential to make medical services connected to internet,available in every remote location during the... The advent of pandemics such as COVID-19 significantly impacts human behaviour and lives every day.Therefore,it is essential to make medical services connected to internet,available in every remote location during these situations.Also,the security issues in the Internet of Medical Things(IoMT)used in these service,make the situation even more critical because cyberattacks on the medical devices might cause treatment delays or clinical failures.Hence,services in the healthcare ecosystem need rapid,uninterrupted,and secure facilities.The solution provided in this research addresses security concerns and services availability for patients with critical health in remote areas.This research aims to develop an intelligent Software Defined Networks(SDNs)enabled secure framework for IoT healthcare ecosystem.We propose a hybrid of machine learning and deep learning techniques(DNN+SVM)to identify network intrusions in the sensor-based healthcare data.In addition,this system can efficiently monitor connected devices and suspicious behaviours.Finally,we evaluate the performance of our proposed framework using various performance metrics based on the healthcare application scenarios.the experimental results show that the proposed approach effectively detects and mitigates attacks in the SDN-enabled IoT networks and performs better that other state-of-art-approaches. 展开更多
关键词 deep neural network healthcare intrusion detection system iot machine learning software-defined networks
下载PDF
Ultrafast Response and Threshold Adjustable Intelligent Thermoelectric Systems for Next‑Generation Self‑Powered Remote IoT Fire Warning
2
作者 Zhaofu Ding Gang Li +5 位作者 Yejun Wang Chunyu Du Zhenqiang Ye Lirong Liang Long‑Cheng Tang Guangming Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期413-428,共16页
Fire warning is vital to human life,economy and ecology.However,the development of effective warning systems faces great challenges of fast response,adjustable threshold and remote detecting.Here,we propose an intelli... Fire warning is vital to human life,economy and ecology.However,the development of effective warning systems faces great challenges of fast response,adjustable threshold and remote detecting.Here,we propose an intelligent self-powered remote IoT fire warning system,by employing single-walled carbon nanotube/titanium carbide thermoelectric composite films.The flexible films,prepared by a convenient solution mixing,display p-type characteristic with excellent high-temperature stability,flame retardancy and TE(power factor of 239.7±15.8μW m^(-1) K^(-2))performances.The comprehensive morphology and structural analyses shed light on the underlying mechanisms.And the assembled TE devices(TEDs)exhibit fast fire warning with adjustable warning threshold voltages(1–10 mV).Excitingly,an ultrafast fire warning response time of~0.1 s at 1 mV threshold voltage is achieved,rivaling many state-of-the-art systems.Furthermore,TE fire warning systems reveal outstanding stability after 50 repeated cycles and desired durability even undergoing 180 days of air exposure.Finally,a TED-based wireless intelligent fire warning system has been developed by coupling an amplifier,analogto-digital converter and Bluetooth module.By combining TE characteristics,high-temperature stability and flame retardancy with wireless IoT signal transmission,TE-based hybrid system developed here is promising for next-generation self-powered remote IoT fire warning applications. 展开更多
关键词 THERMOELECTRIC SELF-POWERED iot fire warning Ultrafast response Threshold adjustable
下载PDF
Intelligent Dynamic Heterogeneous Redundancy Architecture for IoT Systems
3
作者 Zhang Han Wang Yu +2 位作者 Liu Hao Lin Hongyu Chen Liquan 《China Communications》 SCIE CSCD 2024年第7期291-306,共16页
The conventional dynamic heterogeneous redundancy(DHR)architecture suffers from the security threats caused by the stability differences and similar vulnerabilities among the executors.To overcome these challenges,we ... The conventional dynamic heterogeneous redundancy(DHR)architecture suffers from the security threats caused by the stability differences and similar vulnerabilities among the executors.To overcome these challenges,we propose an intelligent DHR architecture,which is more feasible by intelligently combining the random distribution based dynamic scheduling algorithm(RD-DS)and information weight and heterogeneity based arbitrament(IWHA)algorithm.In the proposed architecture,the random distribution function and information weight are employed to achieve the optimal selection of executors in the process of RD-DS,which avoids the case that some executors fail to be selected due to their stability difference in the conventional DHR architecture.Then,through introducing the heterogeneity to restrict the information weights in the procedure of the IWHA,the proposed architecture solves the common mode escape issue caused by the existence of multiple identical error output results of similar vulnerabilities.The experimental results characterize that the proposed architecture outperforms in heterogeneity,scheduling times,security,and stability over the conventional DHR architecture under the same conditions. 展开更多
关键词 dynamic heterogeneous redundancy HETEROGENEITY iot security security defense
下载PDF
Exploring Multi-Task Learning for Forecasting Energy-Cost Resource Allocation in IoT-Cloud Systems
4
作者 Mohammad Aldossary Hatem A.Alharbi Nasir Ayub 《Computers, Materials & Continua》 SCIE EI 2024年第6期4603-4620,共18页
Cloud computing has become increasingly popular due to its capacity to perform computations without relying on physical infrastructure,thereby revolutionizing computer processes.However,the rising energy consumption i... Cloud computing has become increasingly popular due to its capacity to perform computations without relying on physical infrastructure,thereby revolutionizing computer processes.However,the rising energy consumption in cloud centers poses a significant challenge,especially with the escalating energy costs.This paper tackles this issue by introducing efficient solutions for data placement and node management,with a clear emphasis on the crucial role of the Internet of Things(IoT)throughout the research process.The IoT assumes a pivotal role in this study by actively collecting real-time data from various sensors strategically positioned in and around data centers.These sensors continuously monitor vital parameters such as energy usage and temperature,thereby providing a comprehensive dataset for analysis.The data generated by the IoT is seamlessly integrated into the Hybrid TCN-GRU-NBeat(NGT)model,enabling a dynamic and accurate representation of the current state of the data center environment.Through the incorporation of the Seagull Optimization Algorithm(SOA),the NGT model optimizes storage migration strategies based on the latest information provided by IoT sensors.The model is trained using 80%of the available dataset and subsequently tested on the remaining 20%.The results demonstrate the effectiveness of the proposed approach,with a Mean Squared Error(MSE)of 5.33%and a Mean Absolute Error(MAE)of 2.83%,accurately estimating power prices and leading to an average reduction of 23.88%in power costs.Furthermore,the integration of IoT data significantly enhances the accuracy of the NGT model,outperforming benchmark algorithms such as DenseNet,Support Vector Machine(SVM),Decision Trees,and AlexNet.The NGT model achieves an impressive accuracy rate of 97.9%,surpassing the rates of 87%,83%,80%,and 79%,respectively,for the benchmark algorithms.These findings underscore the effectiveness of the proposed method in optimizing energy efficiency and enhancing the predictive capabilities of cloud computing systems.The IoT plays a critical role in driving these advancements by providing real-time data insights into the operational aspects of data centers. 展开更多
关键词 Cloud computing energy efficiency data center optimization internet of things(iot) hybrid models
下载PDF
CL2ES-KDBC:A Novel Covariance Embedded Selection Based on Kernel Distributed Bayes Classifier for Detection of Cyber-Attacks in IoT Systems
5
作者 Talal Albalawi P.Ganeshkumar 《Computers, Materials & Continua》 SCIE EI 2024年第3期3511-3528,共18页
The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed wo... The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed work intends to implement a new security framework for detecting the most specific and harmful intrusions in IoT networks.In this framework,a Covariance Linear Learning Embedding Selection(CL2ES)methodology is used at first to extract the features highly associated with the IoT intrusions.Then,the Kernel Distributed Bayes Classifier(KDBC)is created to forecast attacks based on the probability distribution value precisely.In addition,a unique Mongolian Gazellas Optimization(MGO)algorithm is used to optimize the weight value for the learning of the classifier.The effectiveness of the proposed CL2ES-KDBC framework has been assessed using several IoT cyber-attack datasets,The obtained results are then compared with current classification methods regarding accuracy(97%),precision(96.5%),and other factors.Computational analysis of the CL2ES-KDBC system on IoT intrusion datasets is performed,which provides valuable insight into its performance,efficiency,and suitability for securing IoT networks. 展开更多
关键词 iot security attack detection covariance linear learning embedding selection kernel distributed bayes classifier mongolian gazellas optimization
下载PDF
GRU Enabled Intrusion Detection System for IoT Environment with Swarm Optimization and Gaussian Random Forest Classification
6
作者 Mohammad Shoab Loiy Alsbatin 《Computers, Materials & Continua》 SCIE EI 2024年第10期625-642,共18页
In recent years,machine learning(ML)and deep learning(DL)have significantly advanced intrusion detection systems,effectively addressing potential malicious attacks across networks.This paper introduces a robust method... In recent years,machine learning(ML)and deep learning(DL)have significantly advanced intrusion detection systems,effectively addressing potential malicious attacks across networks.This paper introduces a robust method for detecting and categorizing attacks within the Internet of Things(IoT)environment,leveraging the NSL-KDD dataset.To achieve high accuracy,the authors used the feature extraction technique in combination with an autoencoder,integrated with a gated recurrent unit(GRU).Therefore,the accurate features are selected by using the cuckoo search algorithm integrated particle swarm optimization(PSO),and PSO has been employed for training the features.The final classification of features has been carried out by using the proposed RF-GNB random forest with the Gaussian Naïve Bayes classifier.The proposed model has been evaluated and its performance is verified with some of the standard metrics such as precision,accuracy rate,recall F1-score,etc.,and has been compared with different existing models.The generated results that detected approximately 99.87%of intrusions within the IoT environments,demonstrated the high performance of the proposed method.These results affirmed the efficacy of the proposed method in increasing the accuracy of intrusion detection within IoT network systems. 展开更多
关键词 Machine learning intrusion detection iot gated recurrent unit particle swarm optimization random forest Gaussian Naïve Bayes
下载PDF
A Privacy Preserving Federated Learning System for IoT Devices Using Blockchain and Optimization
7
作者 Yang Han 《Journal of Computer and Communications》 2024年第9期78-102,共25页
In this study, a blockchain based federated learning system using an enhanced weighted mean vector optimization algorithm, known as EINFO, is proposed. The proposed EINFO addresses the limitations of federated averagi... In this study, a blockchain based federated learning system using an enhanced weighted mean vector optimization algorithm, known as EINFO, is proposed. The proposed EINFO addresses the limitations of federated averaging during global update and model training, where data is unevenly distributed among devices and there are variations in the number of data samples. Using a well-defined structure and updating the vector positions by local searching, vector combining, and updating rules, the EINFO algorithm maximizes the shared model parameters. In order to increase the exploration and exploitation capabilities, the model convergence rate is improved and new vectors are generated through the use of a weighted mean vector based on the inverse square law. To choose validators, miners, and to propagate new blocks, a delegated proof of stake based on the reliability of blockchain nodes is suggested. Federated learning is included into the blockchain to protect nodes from both external and internal threats. To determine how well the suggested system performs in relation to current models in the literature, extensive simulations are run. The simulation results show that the proposed system outperforms existing schemes in terms of accuracy, sensitivity and specificity. 展开更多
关键词 Blockchain Credibility Status Federated Learning iot PRIVACY Weighted Mean of Vectors
下载PDF
Feature extraction for machine learning-based intrusion detection in IoT networks 被引量:1
8
作者 Mohanad Sarhan Siamak Layeghy +2 位作者 Nour Moustafa Marcus Gallagher Marius Portmann 《Digital Communications and Networks》 SCIE CSCD 2024年第1期205-216,共12页
A large number of network security breaches in IoT networks have demonstrated the unreliability of current Network Intrusion Detection Systems(NIDSs).Consequently,network interruptions and loss of sensitive data have ... A large number of network security breaches in IoT networks have demonstrated the unreliability of current Network Intrusion Detection Systems(NIDSs).Consequently,network interruptions and loss of sensitive data have occurred,which led to an active research area for improving NIDS technologies.In an analysis of related works,it was observed that most researchers aim to obtain better classification results by using a set of untried combinations of Feature Reduction(FR)and Machine Learning(ML)techniques on NIDS datasets.However,these datasets are different in feature sets,attack types,and network design.Therefore,this paper aims to discover whether these techniques can be generalised across various datasets.Six ML models are utilised:a Deep Feed Forward(DFF),Convolutional Neural Network(CNN),Recurrent Neural Network(RNN),Decision Tree(DT),Logistic Regression(LR),and Naive Bayes(NB).The accuracy of three Feature Extraction(FE)algorithms is detected;Principal Component Analysis(PCA),Auto-encoder(AE),and Linear Discriminant Analysis(LDA),are evaluated using three benchmark datasets:UNSW-NB15,ToN-IoT and CSE-CIC-IDS2018.Although PCA and AE algorithms have been widely used,the determination of their optimal number of extracted dimensions has been overlooked.The results indicate that no clear FE method or ML model can achieve the best scores for all datasets.The optimal number of extracted dimensions has been identified for each dataset,and LDA degrades the performance of the ML models on two datasets.The variance is used to analyse the extracted dimensions of LDA and PCA.Finally,this paper concludes that the choice of datasets significantly alters the performance of the applied techniques.We believe that a universal(benchmark)feature set is needed to facilitate further advancement and progress of research in this field. 展开更多
关键词 Feature extraction Machine learning Network intrusion detection system iot
下载PDF
UAV-assisted cooperative offloading energy efficiency system for mobile edge computing 被引量:1
9
作者 Xue-Yong Yu Wen-Jin Niu +1 位作者 Ye Zhu Hong-Bo Zhu 《Digital Communications and Networks》 SCIE CSCD 2024年第1期16-24,共9页
Reliable communication and intensive computing power cannot be provided effectively by temporary hot spots in disaster areas and complex terrain ground infrastructure.Mitigating this has greatly developed the applicat... Reliable communication and intensive computing power cannot be provided effectively by temporary hot spots in disaster areas and complex terrain ground infrastructure.Mitigating this has greatly developed the application and integration of UAV and Mobile Edge Computing(MEC)to the Internet of Things(loT).However,problems such as multi-user and huge data flow in large areas,which contradict the reality that a single UAV is constrained by limited computing power,still exist.Due to allowing UAV collaboration to accomplish complex tasks,cooperative task offloading between multiple UAVs must meet the interdependence of tasks and realize parallel processing,which reduces the computing power consumption and endurance pressure of terminals.Considering the computing requirements of the user terminal,delay constraint of a computing task,energy constraint,and safe distance of UAV,we constructed a UAV-Assisted cooperative offloading energy efficiency system for mobile edge computing to minimize user terminal energy consumption.However,the resulting optimization problem is originally nonconvex and thus,difficult to solve optimally.To tackle this problem,we developed an energy efficiency optimization algorithm using Block Coordinate Descent(BCD)that decomposes the problem into three convex subproblems.Furthermore,we jointly optimized the number of local computing tasks,number of computing offloaded tasks,trajectories of UAV,and offloading matching relationship between multi-UAVs and multiuser terminals.Simulation results show that the proposed approach is suitable for different channel conditions and significantly saves the user terminal energy consumption compared with other benchmark schemes. 展开更多
关键词 Computation offloading Internet of things(iot) Mobile edge computing(MEC) Block coordinate descent(BCD)
下载PDF
An Adaptive Vision Navigation Algorithm in Agricultural IoT System for Smart Agricultural Robots 被引量:6
10
作者 Zhibin Zhang Ping Li +3 位作者 Shuailing Zhao Zhimin Lv Fang Du Yajian An 《Computers, Materials & Continua》 SCIE EI 2021年第1期1043-1056,共14页
As the agricultural internet of things(IoT)technology has evolved,smart agricultural robots needs to have both flexibility and adaptability when moving in complex field environments.In this paper,we propose the concep... As the agricultural internet of things(IoT)technology has evolved,smart agricultural robots needs to have both flexibility and adaptability when moving in complex field environments.In this paper,we propose the concept of a vision-based navigation system for the agricultural IoT and a binocular vision navigation algorithm for smart agricultural robots,which can fuse the edge contour and the height information of rows of crop in images to extract the navigation parameters.First,the speeded-up robust feature(SURF)extracting and matching algorithm is used to obtain featuring point pairs from the green crop row images observed by the binocular parallel vision system.Then the confidence density image is constructed by integrating the enhanced elevation image and the corresponding binarized crop row image,where the edge contour and the height information of crop row are fused to extract the navigation parameters(θ,d)based on the model of a smart agricultural robot.Finally,the five navigation network instruction sets are designed based on the navigation angleθand the lateral distance d,which represent the basic movements for a certain type of smart agricultural robot working in a field.Simulated experimental results in the laboratory show that the algorithm proposed in this study is effective with small turning errors and low standard deviations,and can provide a valuable reference for the further practical application of binocular vision navigation systems in smart agricultural robots in the agricultural IoT system. 展开更多
关键词 Smart agriculture robot 3D vision guidance confidence density image guidance information extraction agriculture iot
下载PDF
Encrypted Cyberattack Detection System over Encrypted IoT Traffic Based onStatistical Intelligence
11
作者 Il Hwan Ji Ju Hyeon Lee +1 位作者 Seungho Jeon Jung Taek Seo 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1519-1549,共31页
In the early days of IoT’s introduction, it was challenging to introduce encryption communication due to the lackof performance of each component, such as computing resources like CPUs and batteries, to encrypt and d... In the early days of IoT’s introduction, it was challenging to introduce encryption communication due to the lackof performance of each component, such as computing resources like CPUs and batteries, to encrypt and decryptdata. Because IoT is applied and utilized in many important fields, a cyberattack on IoT can result in astronomicalfinancial and human casualties. For this reason, the application of encrypted communication to IoT has beenrequired, and the application of encrypted communication to IoT has become possible due to improvements inthe computing performance of IoT devices and the development of lightweight cryptography. The applicationof encrypted communication in IoT has made it possible to use encrypted communication channels to launchcyberattacks. The approach of extracting evidence of an attack based on the primary information of a networkpacket is no longer valid because critical information, such as the payload in a network packet, is encrypted byencrypted communication. For this reason, technology that can detect cyberattacks over encrypted network trafficoccurring in IoT environments is required. Therefore, this research proposes an encrypted cyberattack detectionsystem for the IoT (ECDS-IoT) that derives valid features for cyberattack detection from the cryptographic networktraffic generated in the IoT environment and performs cyberattack detection based on the derived features. ECDS-IoT identifies identifiable information from encrypted traffic collected in IoT environments and extracts statistics-based features through statistical analysis of identifiable information. ECDS-IoT understands information aboutnormal data by learning only statistical features extracted from normal data. ECDS-IoT detects cyberattacks basedonly on the normal data information it has trained. To evaluate the cyberattack detection performance of theproposed ECDS-IoT in this research, ECDS-IoT used CICIoT2023, a dataset containing encrypted traffic generatedby normal and seven categories of cyberattacks in the IoT environment and experimented with cyberattackdetection on encrypted traffic using Autoencoder, RNN, GRU, LSTM, BiLSTM, and AE-LSTM algorithms. Asa result of evaluating the performance of cyberattack detection for encrypted traffic, ECDS-IoT achieved highperformance such as accuracy 0.99739, precision 0.99154, recall 1.0, F1 score 0.99575, and ROC_AUC 0.99822when using the AE-LSTM algorithm. As shown by the cyberattack detection results of ECDS-IoT, it is possibleto detect most cyberattacks through encrypted traffic. By applying ECDS-IoT to IoT, it can effectively detectcyberattacks concealed in encrypted traffic, promoting the efficient operation of IoT and preventing financial andhuman damage caused by cyberattacks. 展开更多
关键词 iot cybersecurity iot encrypted traffic iot cyberattack detection
下载PDF
A Framework for Enhancing Privacy and Anonymity in Blockchain-Enabled IoT Devices
12
作者 Muhammad Saad Muhammad Raheel Bhutta +1 位作者 Jongik Kim Tae-Sun Chung 《Computers, Materials & Continua》 SCIE EI 2024年第3期4263-4282,共20页
With the increase in IoT(Internet of Things)devices comes an inherent challenge of security.In the world today,privacy is the prime concern of every individual.Preserving one’s privacy and keeping anonymity throughou... With the increase in IoT(Internet of Things)devices comes an inherent challenge of security.In the world today,privacy is the prime concern of every individual.Preserving one’s privacy and keeping anonymity throughout the system is a desired functionality that does not come without inevitable trade-offs like scalability and increased complexity and is always exceedingly difficult to manage.The challenge is keeping confidentiality and continuing to make the person innominate throughout the system.To address this,we present our proposed architecture where we manage IoT devices using blockchain technology.Our proposed architecture works on and off blockchain integrated with the closed-circuit television(CCTV)security camera fixed at the rental property.In this framework,the CCTV security camera feed is redirected towards the owner and renter based on the smart contract conditions.One entity(owner or renter)can see the CCTV security camera feed at one time.There is no third-party dependence except for the CCTV security camera deployment phase.Our contributions include the proposition of framework architecture,a novel smart contract algorithm,and the modification to the ring signatures leveraging an existing cryptographic technique.Analyses are made based on different systems’security and key management areas.In an empirical study,our proposed algorithm performed better in key generation,proof generation,and verification times.By comparing similar existing schemes,we have shown the proposed architectures’advantages.Until now,we have developed this system for a specific area in the real world.However,this system is scalable and applicable to other areas like healthcare monitoring systems,which is part of our future work. 展开更多
关键词 PRIVACY ANONYMITY blockchain iot smart contracts
下载PDF
SDN-based intrusion detection system for IoT using deep learning classifier (IDSIoT-SDL) 被引量:4
13
作者 Azka Wani Revathi S Rubeena Khaliq 《CAAI Transactions on Intelligence Technology》 EI 2021年第3期281-290,共10页
The participation of ordinary devices in networking has created a world of connected devices rapidly.The Internet of Things(IoT)includes heterogeneous devices from every field.There are no definite protocols or standa... The participation of ordinary devices in networking has created a world of connected devices rapidly.The Internet of Things(IoT)includes heterogeneous devices from every field.There are no definite protocols or standards for IoT communication,and most of the IoT devices have limited resources.Enabling a complete security measure for such devices is a challenging task,yet necessary.Many lightweight security solutions have surfaced lately for IoT.The lightweight security protocols are unable to provide an optimum protection against prevailing powerful threats in cyber world.It is also hard to deploy any traditional security protocol on resource-constrained IoT devices.Software-defined networking introduces a centralized control in computer networks.SDN has a programmable approach towards networking that decouples control and data planes.An SDN-based intrusion detection system is proposed which uses deep learning classifier for detection of anomalies in IoT.The proposed intrusion detection system does not burden the IoT devices with security profiles.The proposed work is executed on the simulated environment.The results of the simulation test are evaluated using various matrices and compared with other relevant methods. 展开更多
关键词 iot CLASSIFIER system
下载PDF
HCloud:A Trusted JointCloud Serverless Platform for IoT Systems with Blockchain 被引量:3
14
作者 Zheng Huang Zeyu Mi Zhichao Hua 《China Communications》 SCIE CSCD 2020年第9期1-10,共10页
Cloud computing has been exploited in managing large-scale IoT systems.IoT cloud servers usually handle a large number of requests from various IoT devices.Due to the fluctuant and heavy workload,the servers require t... Cloud computing has been exploited in managing large-scale IoT systems.IoT cloud servers usually handle a large number of requests from various IoT devices.Due to the fluctuant and heavy workload,the servers require the cloud to provide high scalability,stable performance,low price and necessary functionalities.However,traditional clouds usually offer computing service with the abstraction of virtual machine(VM),which can hardly meet these requirements.Meanwhile,different cloud vendors provide different performance stabilities and price models,which fluctuate according to the dynamic workload.A single cloud cannot satisfy all the requirements of the IoT scenario well.The JointCloud computing model empowers the cooperation among multiple public clouds.However,it is still difficult to dynamically schedule the workload on different clouds based on the VM abstraction.This paper introduces HCloud,a trusted JointCloud platform for IoT systems using serverless computing model.HCloud allows an IoT server to be implemented with multiple serverless functions and schedules these functions on different clouds based on a schedule policy.The policy is specified by the client and includes the required functionalities,execution resources,latency,price and so on.HCloud collects the status of each cloud and dispatches serverless functions to the most suitable cloud based on the schedule policy.By leveraging the blockchain technology,we further enforce that our system can neither fake the cloud status nor wrongly dispatch the target functions.We have implemented a prototype of HCloud and evaluated it by simulating multiple cloud providers.The evaluation results show that HCloud can greatly improve the performance of serverless workloads with negligible costs. 展开更多
关键词 iot blockchain serverless jointcloud
下载PDF
IoT-Enabled Plant Monitoring System with Power Optimization and Secure Authentication
15
作者 Samsul Huda Yasuyuki Nogami +5 位作者 Maya Rahayu Takuma Akada MdBiplob Hossain Muhammad Bisri Musthafa Yang Jie Le Hoang Anh 《Computers, Materials & Continua》 SCIE EI 2024年第11期3165-3187,共23页
Global food security is a pressing issue that affects the stability and well-being of communities worldwide.While existing Internet of Things(IoT)enabled plant monitoring systems have made significant strides in agric... Global food security is a pressing issue that affects the stability and well-being of communities worldwide.While existing Internet of Things(IoT)enabled plant monitoring systems have made significant strides in agricultural monitoring,they often face limitations such as high power consumption,restricted mobility,complex deployment requirements,and inadequate security measures for data access.This paper introduces an enhanced IoT application for agricultural monitoring systems that address these critical shortcomings.Our system strategically combines power efficiency,portability,and secure access capabilities,assisting farmers in monitoring and tracking crop environmental conditions.The proposed system includes a remote camera that captures images of surrounding plants and a sensor module that regularly monitors various environmental factors,including temperature,humidity,and soil moisture.We implement power management strategies to minimize energy consumption compared to existing solutions.Unlike conventional systems,our implementation utilizes the Amazon Web Services(AWS)cloud platform for reliable data storage and processing while incorporating comprehensive security measures,including Two-Factor Authentication(2FA)and JSON Web Tokens(JWT),features often overlooked in current agricultural IoT solutions.Users can access this secure monitoring system via a developed Android application,providing convenient mobile access to the gathered plant data.We validate our system’s advantages by implementing it with two potted garlic plants on Okayama University’s rooftop.Our evaluation demonstrates high sensor reliabil-ity,with strong correlations between sensor readings and reference data,achieving determination coefficients(R2)of 0.979 for temperature and 0.750 for humidity measurements.The implemented power management strategies extend battery life to 10 days on a single charge,significantly outperforming existing systems that typically require daily recharging.Furthermore,our dual-layer security implementation utilizing 2FA and JWT successfully protects sensitive agricultural data from unauthorized access. 展开更多
关键词 Plant monitoring AGRICULTURE food security environmental monitoring iot power management AWS secure access JWT
下载PDF
Cloud-Edge Collaborative Federated GAN Based Data Processing for IoT-Empowered Multi-Flow Integrated Energy Aggregation Dispatch
16
作者 Zhan Shi 《Computers, Materials & Continua》 SCIE EI 2024年第7期973-994,共22页
The convergence of Internet of Things(IoT),5G,and cloud collaboration offers tailored solutions to the rigorous demands of multi-flow integrated energy aggregation dispatch data processing.While generative adversarial... The convergence of Internet of Things(IoT),5G,and cloud collaboration offers tailored solutions to the rigorous demands of multi-flow integrated energy aggregation dispatch data processing.While generative adversarial networks(GANs)are instrumental in resource scheduling,their application in this domain is impeded by challenges such as convergence speed,inferior optimality searching capability,and the inability to learn from failed decision making feedbacks.Therefore,a cloud-edge collaborative federated GAN-based communication and computing resource scheduling algorithm with long-term constraint violation sensitiveness is proposed to address these challenges.The proposed algorithm facilitates real-time,energy-efficient data processing by optimizing transmission power control,data migration,and computing resource allocation.It employs federated learning for global parameter aggregation to enhance GAN parameter updating and dynamically adjusts GAN learning rates and global aggregation weights based on energy consumption constraint violations.Simulation results indicate that the proposed algorithm effectively reduces data processing latency,energy consumption,and convergence time. 展开更多
关键词 iot federated learning generative adversarial network data processing multi-flowintegration energy aggregation dispatch
下载PDF
A Novel Graph Structure Learning Based Semi-Supervised Framework for Anomaly Identification in Fluctuating IoT Environment
17
作者 Weijian Song Xi Li +3 位作者 Peng Chen Juan Chen Jianhua Ren Yunni Xia 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期3001-3016,共16页
With the rapid development of Internet of Things(IoT)technology,IoT systems have been widely applied in health-care,transportation,home,and other fields.However,with the continuous expansion of the scale and increasin... With the rapid development of Internet of Things(IoT)technology,IoT systems have been widely applied in health-care,transportation,home,and other fields.However,with the continuous expansion of the scale and increasing complexity of IoT systems,the stability and security issues of IoT systems have become increasingly prominent.Thus,it is crucial to detect anomalies in the collected IoT time series from various sensors.Recently,deep learning models have been leveraged for IoT anomaly detection.However,owing to the challenges associated with data labeling,most IoT anomaly detection methods resort to unsupervised learning techniques.Nevertheless,the absence of accurate abnormal information in unsupervised learning methods limits their performance.To address these problems,we propose AS-GCN-MTM,an adaptive structural Graph Convolutional Networks(GCN)-based framework using a mean-teacher mechanism(AS-GCN-MTM)for anomaly identification.It performs better than unsupervised methods using only a small amount of labeled data.Mean Teachers is an effective semi-supervised learning method that utilizes unlabeled data for training to improve the generalization ability and performance of the model.However,the dependencies between data are often unknown in time series data.To solve this problem,we designed a graph structure adaptive learning layer based on neural networks,which can automatically learn the graph structure from time series data.It not only better captures the relationships between nodes but also enhances the model’s performance by augmenting key data.Experiments have demonstrated that our method improves the baseline model with the highest F1 value by 10.4%,36.1%,and 5.6%,respectively,on three real datasets with a 10%data labeling rate. 展开更多
关键词 iot multivariate time series anomaly detection graph learning SEMI-SUPERVISED mean teachers
下载PDF
A Cloud-Fog Enabled and Privacy-Preserving IoT Data Market Platform Based on Blockchain
18
作者 Yurong Luo Wei You +3 位作者 Chao Shang Xiongpeng Ren Jin Cao Hui Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2237-2260,共24页
The dynamic landscape of the Internet of Things(IoT)is set to revolutionize the pace of interaction among entities,ushering in a proliferation of applications characterized by heightened quality and diversity.Among th... The dynamic landscape of the Internet of Things(IoT)is set to revolutionize the pace of interaction among entities,ushering in a proliferation of applications characterized by heightened quality and diversity.Among the pivotal applications within the realm of IoT,as a significant example,the Smart Grid(SG)evolves into intricate networks of energy deployment marked by data integration.This evolution concurrently entails data interchange with other IoT entities.However,there are also several challenges including data-sharing overheads and the intricate establishment of trusted centers in the IoT ecosystem.In this paper,we introduce a hierarchical secure data-sharing platform empowered by cloud-fog integration.Furthermore,we propose a novel non-interactive zero-knowledge proof-based group authentication and key agreement protocol that supports one-to-many sharing sets of IoT data,especially SG data.The security formal verification tool shows that the proposed scheme can achieve mutual authentication and secure data sharing while protecting the privacy of data providers.Compared with previous IoT data sharing schemes,the proposed scheme has advantages in both computational and transmission efficiency,and has more superiority with the increasing volume of shared data or increasing number of participants. 展开更多
关键词 iot data sharing zero-knowledge proof authentication privacy preserving blockchain
下载PDF
A Review of Lightweight Security and Privacy for Resource-Constrained IoT Devices
19
作者 Sunil Kumar Dilip Kumar +3 位作者 Ramraj Dangi Gaurav Choudhary Nicola Dragoni Ilsun You 《Computers, Materials & Continua》 SCIE EI 2024年第1期31-63,共33页
The widespread and growing interest in the Internet of Things(IoT)may be attributed to its usefulness in many different fields.Physical settings are probed for data,which is then transferred via linked networks.There ... The widespread and growing interest in the Internet of Things(IoT)may be attributed to its usefulness in many different fields.Physical settings are probed for data,which is then transferred via linked networks.There are several hurdles to overcome when putting IoT into practice,from managing server infrastructure to coordinating the use of tiny sensors.When it comes to deploying IoT,everyone agrees that security is the biggest issue.This is due to the fact that a large number of IoT devices exist in the physicalworld and thatmany of themhave constrained resources such as electricity,memory,processing power,and square footage.This research intends to analyse resource-constrained IoT devices,including RFID tags,sensors,and smart cards,and the issues involved with protecting them in such restricted circumstances.Using lightweight cryptography,the information sent between these gadgets may be secured.In order to provide a holistic picture,this research evaluates and contrasts well-known algorithms based on their implementation cost,hardware/software efficiency,and attack resistance features.We also emphasised how essential lightweight encryption is for striking a good cost-to-performance-to-security ratio. 展开更多
关键词 iot a sensor device LIGHTWEIGHT CRYPTOGRAPHY block cipher smart card security and privacy
下载PDF
Anomaly-Based Intrusion DetectionModel Using Deep Learning for IoT Networks
20
作者 Muaadh A.Alsoufi Maheyzah Md Siraj +4 位作者 Fuad A.Ghaleb Muna Al-Razgan Mahfoudh Saeed Al-Asaly Taha Alfakih Faisal Saeed 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期823-845,共23页
The rapid growth of Internet of Things(IoT)devices has brought numerous benefits to the interconnected world.However,the ubiquitous nature of IoT networks exposes them to various security threats,including anomaly int... The rapid growth of Internet of Things(IoT)devices has brought numerous benefits to the interconnected world.However,the ubiquitous nature of IoT networks exposes them to various security threats,including anomaly intrusion attacks.In addition,IoT devices generate a high volume of unstructured data.Traditional intrusion detection systems often struggle to cope with the unique characteristics of IoT networks,such as resource constraints and heterogeneous data sources.Given the unpredictable nature of network technologies and diverse intrusion methods,conventional machine-learning approaches seem to lack efficiency.Across numerous research domains,deep learning techniques have demonstrated their capability to precisely detect anomalies.This study designs and enhances a novel anomaly-based intrusion detection system(AIDS)for IoT networks.Firstly,a Sparse Autoencoder(SAE)is applied to reduce the high dimension and get a significant data representation by calculating the reconstructed error.Secondly,the Convolutional Neural Network(CNN)technique is employed to create a binary classification approach.The proposed SAE-CNN approach is validated using the Bot-IoT dataset.The proposed models exceed the performance of the existing deep learning approach in the literature with an accuracy of 99.9%,precision of 99.9%,recall of 100%,F1 of 99.9%,False Positive Rate(FPR)of 0.0003,and True Positive Rate(TPR)of 0.9992.In addition,alternative metrics,such as training and testing durations,indicated that SAE-CNN performs better. 展开更多
关键词 iot anomaly intrusion detection deep learning sparse autoencoder convolutional neural network
下载PDF
上一页 1 2 102 下一页 到第
使用帮助 返回顶部