期刊文献+
共找到39篇文章
< 1 2 >
每页显示 20 50 100
基于自适应聚焦CRIoU损失的目标检测算法
1
作者 肖振久 赵昊泽 +5 位作者 张莉莉 夏羽 郭杰龙 俞辉 李成龙 王俐文 《液晶与显示》 CAS CSCD 北大核心 2023年第11期1468-1480,共13页
在目标检测任务中,传统的边界框回归损失函数所回归的内容与评价标准IoU(Intersection over Union)之间存在不相关性,并且对于边界框的回归属性存在一定不合理性,使得回归属性不完整,降低了检测精度和收敛速度,甚至还会造成回归阻碍的... 在目标检测任务中,传统的边界框回归损失函数所回归的内容与评价标准IoU(Intersection over Union)之间存在不相关性,并且对于边界框的回归属性存在一定不合理性,使得回归属性不完整,降低了检测精度和收敛速度,甚至还会造成回归阻碍的情况。并且在回归任务中也存在样本不均衡的情况,大量的低质量样本影响了损失收敛。为了提高检测精度和回归收敛速度提出了一种新的边界框回归损失函数。首先确定设计思想并设计IoU系列损失函数的范式;其次在IoU损失的基础上引入两中心点形成矩形的周长和两框形成的最小闭包矩形周长的比值作为边界框中心点距离惩罚项,并且将改进的IoU损失应用到非极大值抑制(Non-Maximum Suppression,NMS)处理中。接着引入两框的宽高误差和最小外包框的宽高平方作为宽高惩罚项,确定CRIoU(Complete Relativity IoU,CRIoU)损失函数。最后在CRIoU的基础上加入自适应加权因子,对高质量样本的回归损失加权,定义了自适应聚焦CRIoU(Adaptive focal CRIoU,AF-CRIoU)。实验结果表明,使用AF-CRIoU损失函数对比传统非IoU系列损失的检测精度最高相对提升了8.52%,对比CIoU系列损失的检测精度最高相对提升了2.69%,使用A-CRIoU-NMS(Around CRIoU NMS)方法对比原NMS方法的检测精度提升0.14%。将AF-CRIoU损失应用到安全帽检测中,也达到了很好的检测效果。 展开更多
关键词 目标检测 边界框回归 iou损失函数 非极大值抑制 自适应聚焦损失
下载PDF
一种用于目标跟踪边界框回归的光滑IoU损失 被引量:11
2
作者 李功 赵巍 +1 位作者 刘鹏 唐降龙 《自动化学报》 EI CAS CSCD 北大核心 2023年第2期288-306,共19页
边界框回归分支是深度目标跟踪器的关键模块,其性能直接影响跟踪器的精度.评价精度的指标之一是交并比(Intersection over union,IoU).基于IoU的损失函数取代了l_(n)-norm损失成为目前主流的边界框回归损失函数,然而IoU损失函数存在2个... 边界框回归分支是深度目标跟踪器的关键模块,其性能直接影响跟踪器的精度.评价精度的指标之一是交并比(Intersection over union,IoU).基于IoU的损失函数取代了l_(n)-norm损失成为目前主流的边界框回归损失函数,然而IoU损失函数存在2个固有缺陷:1)当预测框与真值框不相交时IoU为常量0,无法梯度下降更新边界框的参数;2)在IoU取得最优值时其梯度不存在,边界框很难收敛到IoU最优处.揭示了在回归过程中IoU最优的边界框各参数之间蕴含的定量关系,指出在边界框中心处于特定位置时存在多种尺寸不同的边界框使IoU损失最优的情况,这增加了边界框尺寸回归的不确定性.从优化两个统计分布之间散度的视角看待边界框回归问题,提出了光滑IoU(Smooth-IoU,SIoU)损失,即构造了在全局上光滑(即连续可微)且极值唯一的损失函数,该损失函数自然蕴含边界框各参数之间特定的最优关系,其唯一取极值的边界框可使IoU达到最优.光滑性确保了在全局上梯度存在使得边界框更容易回归到极值处,而极值唯一确保了在全局上可梯度下降更新参数,从而避开了IoU损失的固有缺陷.提出的光滑损失可以很容易取代IoU损失集成到现有的深度目标跟踪器上训练边界框回归,在LaSOT、GOT-10k、TrackingNet、OTB2015和VOT2018测试基准上所取得的结果,验证了光滑IoU损失的易用性和有效性. 展开更多
关键词 光滑iou损失 l_(n)-norm损失 边界框回归 目标跟踪
下载PDF
基于SAW-YOLO v8n的葡萄幼果轻量化检测方法
3
作者 张传栋 高鹏 +1 位作者 亓璐 丁华立 《农业机械学报》 EI CAS CSCD 北大核心 2024年第10期286-294,共9页
葡萄簇幼果果实受背景色、遮挡和光照变化的影响,检测难度大。为了实现对背景色、遮挡和光照变化具有鲁棒性的葡萄簇幼果检测,提出了一种融合随机注意力机制(Shuffle attention,SA)的改进YOLO v8n模型(SAW-YOLO v8n)。通过在YOLO v8n模... 葡萄簇幼果果实受背景色、遮挡和光照变化的影响,检测难度大。为了实现对背景色、遮挡和光照变化具有鲁棒性的葡萄簇幼果检测,提出了一种融合随机注意力机制(Shuffle attention,SA)的改进YOLO v8n模型(SAW-YOLO v8n)。通过在YOLO v8n模型的Neck结构中融入SA机制,增强网络多尺度特征融合能力,提升检测目标的特征信息表示,并抑制其他无关信息,提高检测网络检测精度,在不明显增加网络深度和内存开销的情况下,实现了葡萄簇幼果的高效准确检测;采用基于动态非单调聚焦机制的损失(Wise intersection over union loss,Wise-IoU Loss)作为边界框回归损失函数,加速网络收敛并进一步提高模型的准确率。构建了葡萄簇幼果的数据集GGrape,该数据集由3780幅复杂场景下的葡萄簇幼果图像及对应标注文件组成。通过该数据集对SAW-YOLO v8n模型进行训练和测试。测试结果表明,基于SAW-YOLO v8n的葡萄簇幼果检测算法的精度(Precision,P)、召回率(Recall,R)、平均精度均值(Mean average precision,mAP)和F1值分别为92.80%、91.30%、96.10%和92.04%,检测速度为140.85 f/s,模型内存占用量为6.20 MB。与SSD、YOLO v5s、YOLO v6n、YOLO v7-tiny、YOLO v8n等5个轻量化模型相比,其mAP值分别提高16.06%、1.05%、1.48%、0.84%、0.73%,F1值分别提高24.85%、1.43%、1.43%、1.09%、1.60%,模型内存占用量分别降低93.16%、56.94%、37.63%、47.00%、0,是所有模型中最小的,具有明显的轻量化、高精度优势。讨论了不同遮挡程度和光照条件的葡萄幼果检测,结果表明,基于SAW-YOLO v8n的葡萄幼果检测方法能适应不同遮挡和光照变化,具有良好的鲁棒性。结果表明,SAW-YOLO v8n不仅能满足对葡萄簇幼果检测的高精度、高速度、轻量化的要求,且具有较强的鲁棒性和实时性。 展开更多
关键词 葡萄幼果 疏果 目标检测 shuffle attention YOLO v8n Wise-iou loss
下载PDF
一种面向行人跌倒检测的改进YOLOv5算法
4
作者 沈国鑫 魏怡 +1 位作者 刘力手 尹天睿 《小型微型计算机系统》 CSCD 北大核心 2024年第4期902-909,共8页
针对行人跌倒检测的应用场景复杂,原始YOLOv5的检测精度不高,特征融合不充分的问题,本文首先提出了一种新的特征金字塔(FPN)结构-自适应特征增强融合金字塔网络(AFEF-FPN)和特征增强融合模块(FFEM)来增加特征的表示以及融合深度.其次使... 针对行人跌倒检测的应用场景复杂,原始YOLOv5的检测精度不高,特征融合不充分的问题,本文首先提出了一种新的特征金字塔(FPN)结构-自适应特征增强融合金字塔网络(AFEF-FPN)和特征增强融合模块(FFEM)来增加特征的表示以及融合深度.其次使用基于全局语义信息的上采样算子CARAFE代替Nearest Upsample来建模全局上采样信息,使用Alpha IoU Loss代替CIoU Loss来提高High IoU目标的损失和回归精度.最终本文网络YOLOv5(AFEF-FPN)在训练集上取得了98.62%mAP,在测试集上取得了96.21%mAP,相比于原始YOLOv5网络在训练集和测试集上分别提升了1.64%和2.86%.实验表明,本文网络在复杂场景下的目标检测效果优于原始YOLOv5及其他网络. 展开更多
关键词 AFEF-FPN FFEM 注意力模块 上采样算子 iou loss
下载PDF
面向密集场景的多目标车辆检测算法
5
作者 霍爱清 郭岚洁 冯若水 《电子测量技术》 北大核心 2024年第9期129-136,共8页
目标检测可为自动驾驶车辆提供附近目标的位置、大小和类别,但是密集场景中多目标检测仍然存在漏检、误检问题,为此该文提出了一种AD-YOLOv5车辆检测模型。首先,利用轻量型结构CBAM注意力机制对特征提取网络中的C3模块进行了优化得到C-C... 目标检测可为自动驾驶车辆提供附近目标的位置、大小和类别,但是密集场景中多目标检测仍然存在漏检、误检问题,为此该文提出了一种AD-YOLOv5车辆检测模型。首先,利用轻量型结构CBAM注意力机制对特征提取网络中的C3模块进行了优化得到C-C3模块,提高了对特征信息的获取能力,降低了对其他特征的关注度;其次,在检测头部分对分类和回归任务进行解耦,以实现更强的特征表达;然后,利用广义幂变换对IoU进行转换操作,提出鲁棒性更好的Alpha-IoU损失函数,提升了模型的检测精度并加快模型的收敛速度;最后,采用GridMask数据增强技术,增加了样本的复杂性,并在处理后的数据集上进行了实验。实验结果表明,改进后的目标检测模型的平均精度均值达到72.72%,与原YOLOv5模型相比提高了2.25%,且模型具有较高的收敛速度,通过可视化对比实验,直观展示了本文模型在密集场景能有效避免误检、漏检现象。 展开更多
关键词 目标检测 密集场景 YOLOv5算法 Alpha-iou损失函数 CBAM 双检测头
下载PDF
基于YOLOv5s−FSW模型的选煤厂煤矸检测研究
6
作者 燕碧娟 王凯民 +3 位作者 郭鹏程 郑馨旭 董浩 刘勇 《工矿自动化》 CSCD 北大核心 2024年第5期36-43,66,共9页
针对现有煤矸检测模型存在的特征提取不充分、参数量大、检测精度低且实时性差等问题,提出了一种基于YOLOv5s−FSW模型的选煤厂煤矸检测方法。该模型在YOLOv5s的基础上进行改进,首先将主干网络的C3模块替换为FasterNet Block结构,通过降... 针对现有煤矸检测模型存在的特征提取不充分、参数量大、检测精度低且实时性差等问题,提出了一种基于YOLOv5s−FSW模型的选煤厂煤矸检测方法。该模型在YOLOv5s的基础上进行改进,首先将主干网络的C3模块替换为FasterNet Block结构,通过降低模型的参数量和计算量提高检测速度;然后,在颈部网络引入无参型SimAM注意力机制,增强模型对复杂环境下重要目标的关注,进一步提高模型的特征提取能力;最后,在输出端用Wise−IoU替换CIoU边界框损失函数,使模型聚焦普通质量锚框,提高收敛速度和边框的检测精度。消融实验结果表明:与YOLOv5s模型相比,YOLOv5s−FSW模型的平均精度均值(mAP)提高了1.9%,模型权重减少了0.6 MiB,参数量减少了4.7%,检测速度提高了19.3%。对比实验结果表明:YOLOv5s−FSW模型的mAP达95.8%,较YOLOv5s−CBC,YOLOv5s−ASA,YOLOv5s−SDE模型分别提高了1.1%,1.5%和1.2%,较YOLOv5m,YOLOv6s模型分别提高了0.3%,0.6%;检测速度达36.4帧/s,较YOLOv5s−CBC,YOLOv5s−ASA模型分别提高了28.2%和20.5%,较YOLOv5m,YOLOv6s,YOLOv7模型分别提高了16.3%,15.2%,45.0%。热力图可视化实验结果表明:YOLOv5s−FSW模型对煤矸目标特征区域更加敏感且关注度更高。检测实验结果表明:在环境昏暗、图像模糊、目标相互遮挡的复杂场景下,YOLOv5s−FSW模型对煤矸目标检测的置信度得分高于YOLOv5s模型,且有效避免了误检和漏检现象的发生。 展开更多
关键词 煤矸检测 YOLOv5s FasterNet Block SimAM注意力机制 Wise−iou边界框损失函数
下载PDF
基于改进YOLOv8n的复杂环境下柑橘识别 被引量:5
7
作者 岳凯 张鹏超 +2 位作者 王磊 郭芝淼 张家俊 《农业工程学报》 EI CAS CSCD 北大核心 2024年第8期152-158,共7页
针对复杂环境下柑橘果实大量重叠、枝叶遮挡且现有模型参数量大、计算复杂度高等问题,提出了一种基于改进YOLOv8n的柑橘识别模型YOLOv8-MEIN。首先,该研究设计了ME卷积模块并使用它改进YOLOv8n的C2f模块。其次,为了弥补CIoU损失函数在... 针对复杂环境下柑橘果实大量重叠、枝叶遮挡且现有模型参数量大、计算复杂度高等问题,提出了一种基于改进YOLOv8n的柑橘识别模型YOLOv8-MEIN。首先,该研究设计了ME卷积模块并使用它改进YOLOv8n的C2f模块。其次,为了弥补CIoU损失函数在检测任务中泛化性弱和收敛速度慢的问题,使用Inner-CIoU损失函数加速边界框回归,提高模型检测性能。最后,在自建数据集上进行模型试验对比,试验结果表明,YOLOv8-MEIN模型交并比阈值为0.5的平均精度均值mAP_(0.5)值为96.9%,召回率为91.7%,交并比阈值为_(0.5~0.95)的平均精度均值mAP_(0.5~0.95)值为85.8%,模型大小为5.8 MB,参数量为2.87 M。与原模型YOLOv8n相比,mAP_(0.5)值、召回率、mAP_(0.5~0.95)值分别提高了0.4、1.0、0.6个百分点,模型大小和参数量相比于原模型分别降低了3.3%和4.3%,为柑橘的自动化采摘提供技术参考。 展开更多
关键词 图像识别 深度学习 目标检测 YOLov8n Inner-iou损失函数 复杂环境 柑橘
下载PDF
基于点云的自动驾驶下三维目标检测
8
作者 杨咏嘉 钟良琪 闫胜业 《计算机工程与设计》 北大核心 2024年第4期1093-1099,共7页
针对当前三维目标检测算法对行人、骑行人等小目标检测效果不佳的缺点,提出一种改进PV-RCNN的三维目标检测算法。改进关键点下采样方式,通过滤除背景及离群点提高关键点在目标上的命中率;设计多尺度区域建议网络,尺度匹配的特征图提高... 针对当前三维目标检测算法对行人、骑行人等小目标检测效果不佳的缺点,提出一种改进PV-RCNN的三维目标检测算法。改进关键点下采样方式,通过滤除背景及离群点提高关键点在目标上的命中率;设计多尺度区域建议网络,尺度匹配的特征图提高边界框的生成质量;使用加入方向感知的DIoU损失函数优化边界框的回归。实验结果表明,与基准网络相比,算法在KITTI测试集的车辆、行人和骑行人的mAP分别提高了0.77%、6.33%和2.05%,有效提高了网络性能。 展开更多
关键词 深度学习 三维目标检测 特征金字塔 原始点云 交并比损失函数 特征融合 点云下采样
下载PDF
基于改进YOLOX的输电线路故障检测算法
9
作者 吴恒锋 侯兴松 王华珂 《计算机与现代化》 2024年第5期5-10,共6页
电力系统是国民生活的重要基础,对输电线故障进行智能检测具有重大的社会和经济价值。针对输电线故障检测场景缺少公开数据集,同时存在多个尺度目标时检测效果差、高IoU检测框难以获取等问题,本文提出一种基于YOLOX的输电线故障检测算... 电力系统是国民生活的重要基础,对输电线故障进行智能检测具有重大的社会和经济价值。针对输电线故障检测场景缺少公开数据集,同时存在多个尺度目标时检测效果差、高IoU检测框难以获取等问题,本文提出一种基于YOLOX的输电线故障检测算法。本文通过采集和仿真建立输电线故障检测数据集,然后在YOLOX特征融合机制的基础上,提出基于空洞卷积的自适应多尺度特征融合方法,实现多尺度特征的更有效利用,最后提出一种新的损失函数,可以有效提高网络对高IoU检测框的优化能力并解决样本不平衡问题,显著提高检测精度。实验结果表明,在本文的数据集中,本文所提的算法在保证实时性的同时,mAP_(50:95)依然能达到67.48%,超过了EfficientDet、YOLOV5等经典算法。 展开更多
关键词 故障检测 YOLOX 自适应多尺度融合 多项式iou损失
下载PDF
基于改进目标检测的动态场景SLAM研究
10
作者 史蓝兮 颜文旭 +1 位作者 倪宏宇 赵峰 《系统仿真学报》 CAS CSCD 北大核心 2024年第4期1028-1042,共15页
针对单目SLAM在动态场景下存在的对极约束误匹配问题,提出一种基于目标检测的动态特征点选择方法,通过在特征提取时剔除SLAM系统前端图像帧中动态特征点,提高SLAM的定位精度。提出了一个改进的目标检测网络,利用重叠面积、距离相似度和... 针对单目SLAM在动态场景下存在的对极约束误匹配问题,提出一种基于目标检测的动态特征点选择方法,通过在特征提取时剔除SLAM系统前端图像帧中动态特征点,提高SLAM的定位精度。提出了一个改进的目标检测网络,利用重叠面积、距离相似度和余弦相似度构建描述边界框的回归损失函数,实现目标的准确定位,获得当前图像帧中物体特征点范围。判断物体类别,对于标记为动态的物体根据目标检测结果剔除前端图像帧中的动态特征点。根据静态特征点,采用对极约束进行两帧图像间的特征匹配估计位姿,对单目相机运动进行跟踪、建图与闭环检测。通过对目标检测网络的主干进行结构重参数化改进,提升推理过程的速度,保证整体系统运行的实时性。在公开数据集KITTI的11个序列上的实验结果表明:改进后的系统比ORB-SLAM3系统定位精度提升了23.4%,帧率可以达到30帧/s以上,在保证实时运行的条件下能有效提高动态场景下单目SLAM系统定位精度。 展开更多
关键词 视觉SLAM 对极约束 特征匹配 目标检测 iou损失函数 结构重参数化
下载PDF
面向单阶段目标检测的损失函数优化设计
11
作者 刘龙哲 刘刚 +2 位作者 徐红鹏 权冰洁 田慧 《电光与控制》 CSCD 北大核心 2024年第3期86-93,共8页
在基于深度学习的单阶段目标检测中,从交并比(IoU)出发的边界框回归损失对边界框位置关系变化敏感度不够,当预测框与真值框处于不同包含关系时,已有损失无法精确区分。针对上述问题,提出基于IoU的回归位置关系敏感度损失(RPIoU)。该损... 在基于深度学习的单阶段目标检测中,从交并比(IoU)出发的边界框回归损失对边界框位置关系变化敏感度不够,当预测框与真值框处于不同包含关系时,已有损失无法精确区分。针对上述问题,提出基于IoU的回归位置关系敏感度损失(RPIoU)。该损失设计强化预测框和真值框相对位置关系的敏感度,首先在IoU后添加惩罚项,使两框角点无限靠近,解决中心点重合时IoU退化问题;其次引入非重叠区域面积与真值框面积比值为参数的指数函数作为惩罚项,解决损失无法区分预测框和真值框存在不同包含关系的问题,更精准地指导边框回归的位置;考虑到单阶段目标检测算法总损失各部分对于训练结果的贡献度不同,以平均精度均值(mAP)作为适应度函数,利用遗传算法对训练总损失进行优化,得到分类、回归、置信度损失的各自最佳权重。将设计的损失应用于单阶段目标检测算法YOLOv5,分别在可见光公开数据集VisDrone和自制红外飞机数据集上进行验证。在可见光公开数据集上的mAP达到0.447,比原始YOLOv5提升0.037;在红外飞机数据集的mAP达到0.966,比原始YOLOv5提升0.014。 展开更多
关键词 标检测 单阶段 iou损失 RPiou损失
下载PDF
基于改进YOLOv8的工厂行人检测算法
12
作者 陈思涵 刘勇 何祥 《现代电子技术》 北大核心 2024年第24期160-166,共7页
针对工厂中行人检测算法精度不足,存在误检、漏检等问题,提出一种基于改进YOLOv8的工厂行人检测算法。首先,在YOLOv8的C2f模块中引入卷积块注意力机制模块(CBAM),以帮助主干网络聚焦于关键特征并抑制非关键特征,从而提升模型对遮挡物和... 针对工厂中行人检测算法精度不足,存在误检、漏检等问题,提出一种基于改进YOLOv8的工厂行人检测算法。首先,在YOLOv8的C2f模块中引入卷积块注意力机制模块(CBAM),以帮助主干网络聚焦于关键特征并抑制非关键特征,从而提升模型对遮挡物和小目标的检测准确度;其次,在Neck网络中将卷积神经网络Conv模块替换成CoordConv模块,以充分利用该模块的定位能力,从而解决目标检测中的定位准确性问题,提升模型对空间位置的感知能力;最后,采用Inner-IoU损失函数替代原始的CIoU损失函数,来提高目标检测边界框的回归精度。在自制的工厂行人图像数据集(3 600张图像)上进行了训练和测试,实验结果表明:相较于基础YOLOv8算法,改进YOLOv8算法在平均精度均值(mAP)和每秒帧率(FPS)方面分别提高了2.26%和35.6 f/s,验证了改进算法在检测性能上的提升。 展开更多
关键词 行人检测 YOLOv8算法 深度学习 卷积块注意力机制模块(CBAM) CoordConv Inner-iou损失函数
下载PDF
基于改进YOLOV8的图像液晶显示屏像素缺陷检测算法
13
作者 张峰 《计算机科学》 CSCD 北大核心 2024年第S02期235-241,共7页
在工业仪表液晶显示屏检测过程中,由于显示屏像素尺寸较小,像素缺陷难以被检测。传统的计算机视觉方法对环境变化敏感,需要手动设置参数。针对上述问题,设计了一种基于深度学习的液晶屏缺陷检测算法,其能够在较低的算力条件下识别液晶... 在工业仪表液晶显示屏检测过程中,由于显示屏像素尺寸较小,像素缺陷难以被检测。传统的计算机视觉方法对环境变化敏感,需要手动设置参数。针对上述问题,设计了一种基于深度学习的液晶屏缺陷检测算法,其能够在较低的算力条件下识别液晶屏的像素级别像素缺陷。主要工作包括:(1)针对小尺寸目标正负样本匹配过程中正样本数量较少的问题,提出了一种不同尺寸目标的自适应正样本数量增强方法;(2)针对小尺寸目标正样本IoU小导致训练困难的问题,提出了一种自适应正样本IoU补偿加权方法;(3)针对小数据集对超参数敏感的问题,设计了一种正负交叉熵不平衡权重分类损失函数;(4)针对小尺寸目标细节特征提取困难的问题,在主干网络中引入了频域通道注意力,强化了小目标的细节特征提取能力。实验结果表明,相较于基线模型YOLOV8,此算法的小尺寸检测目标的mAP_s达到63.3%,提高了3.7%。其中,小尺寸像素缺陷的mAP_s达到78.8%,提升了4.5%;灰尘杂质检测目标的mAP_s达到47.8%,提升了3%;像素缺陷召回率达到99.8%。以上结果充分验证了算法的有效性。 展开更多
关键词 小目标 iou补偿 不平衡加权损失 正样本数量增强
下载PDF
基于改进YOLOv8的水下目标检测算法
14
作者 李大海 李冰涛 王振东 《计算机应用》 CSCD 北大核心 2024年第11期3610-3616,共7页
由于水下生物的特性,水下图像中存在较多难以检测的小目标,且目标之间经常相互遮挡,而水下环境中的光线吸收和散射也会造成水下图像的颜色偏移和模糊。针对上述问题,提出水下目标检测算法WCA-YOLOv8。首先,设计特征融合模块(FFM),增强... 由于水下生物的特性,水下图像中存在较多难以检测的小目标,且目标之间经常相互遮挡,而水下环境中的光线吸收和散射也会造成水下图像的颜色偏移和模糊。针对上述问题,提出水下目标检测算法WCA-YOLOv8。首先,设计特征融合模块(FFM),增强对空间维度信息的关注,提升对模糊和颜色偏移目标的识别能力;其次,加入FCA(FReLU Coordinate Attention)模块,增强对相互重叠、遮挡水下目标的特征提取能力;再次,为了提高模型对水下小目标的检测性能,将完整交并比(CIoU)损失函数替换为WIoU v3(Wise-IoU version 3)损失函数;最后,设计下采样增强模块(DEM),使特征提取过程中保存的上下文信息更完整,改善水下目标检测的性能。RUOD和URPC数据集上的实验结果表明,WCA-YOLOv8的检测平均精度均值(mAP0.5)分别为75.8%和88.6%,检测速度分别为60 frame/s和57 frame/s。与其他前沿的水下物体检测算法相比,WCA-YOLOv8不仅能够获得更高的检测准确性,还可达到更快的检测速度。 展开更多
关键词 YOLOv8 水下目标检测 特征融合 Wiou v3损失函数
下载PDF
基于改进YOLOX-S的足球比赛视频目标检测方法
15
作者 何妍妍 《高师理科学刊》 2024年第1期30-35,共6页
为了提升足球赛事水平,催生出足球新战术,识别足球巨星梅西和足球的位置,为进一步的跟踪提供良好的基础,提出了一种基于改进YOLOX-S的足球赛事目标检测方法.使用Pseudo-IoU度量,改进了YOLOX-S中的正样本初步筛选机制,将更标准化和准确... 为了提升足球赛事水平,催生出足球新战术,识别足球巨星梅西和足球的位置,为进一步的跟踪提供良好的基础,提出了一种基于改进YOLOX-S的足球赛事目标检测方法.使用Pseudo-IoU度量,改进了YOLOX-S中的正样本初步筛选机制,将更标准化和准确的分配规则引入到YOLOX-S无锚检测框架.在损失函数中使用了Focal Loss,以平衡难易样本.实验结果表明,相较于YOLOX-S模型,所提模型具有更好的综合表现,足球类别平均精度为79.8%,梅西类别平均精度为72.6%,平均精度均值为76.2%. 展开更多
关键词 目标检测 YOLOX-S 足球赛事 Pseudo-iou度量 Focal loss
下载PDF
基于Flexible YOLOv7的输电线路绝缘子缺陷检测和故障预警方法 被引量:10
16
作者 宋智伟 黄新波 +1 位作者 纪超 张烨 《高电压技术》 EI CAS CSCD 北大核心 2023年第12期5084-5094,共11页
电力设备的平稳运行是保障居民生产生活的重要前提。输电线路绝缘子缺陷尺寸较小,传统的目标检测算法通常难以识别到缺陷目标,误检、漏检率较高。针对不同材质绝缘子缺陷检测存在目标过小、遮挡、背景复杂等难题,提出了一种基于Flexible... 电力设备的平稳运行是保障居民生产生活的重要前提。输电线路绝缘子缺陷尺寸较小,传统的目标检测算法通常难以识别到缺陷目标,误检、漏检率较高。针对不同材质绝缘子缺陷检测存在目标过小、遮挡、背景复杂等难题,提出了一种基于Flexible YOLOv7的绝缘子缺陷检测算法。该算法继承了YOLOv7网络的E-ELAN结构、Rep重参数化和辅助训练策略,并且在特征提取的过程中集成GAM注意力机制以放大显著的跨维度接受区域,通过高效的Ghost SPPCSPC结构减少模型训练过程中的参数冗余,引入Efficient IOU Loss重点关注高质量的anchors提升原始模型的检测精度。最后通过图像后处理技术对绝缘子缺陷进行等级划分与精细计算,并结合算法部署开发了绝缘子缺陷故障检测系统用于故障的提前预警。实验结果表明,该算法在密集目标、遮挡、小目标缺陷检测中的平均准确率AP、召回率Recall、相关指标F1指标均领先于当前先进的几类目标检测算法,在复杂环境下的绝缘子缺陷检测和故障预警方面具有一定的现实意义。 展开更多
关键词 绝缘子缺陷检测 Flexible YOLOv7 GAM注意力机制 Efficient iou loss 图像后处理技术 输电线路故障预警
下载PDF
基于改进SSD模型的输电线路巡检图像金具检测方法 被引量:47
17
作者 戚银城 江爱雪 +2 位作者 赵振兵 郎静宜 聂礼强 《电测与仪表》 北大核心 2019年第22期7-12,43,共7页
为了解决航拍图像金具智能检测问题,提出一种基于改进SSD模型的输电线路航拍巡检图像金具目标检测方法。对巡检图像进行多角度旋转,并自适应裁剪扩充样本,以解决金具在图像中占比过小导致大量漏检问题,使用改进的IoU得到对目标尺度更敏... 为了解决航拍图像金具智能检测问题,提出一种基于改进SSD模型的输电线路航拍巡检图像金具目标检测方法。对巡检图像进行多角度旋转,并自适应裁剪扩充样本,以解决金具在图像中占比过小导致大量漏检问题,使用改进的IoU得到对目标尺度更敏感的默认框;进一步针对图像中金具目标密集问题,在模型中加入对密集目标检测有效的斥力损失,提高模型对密集遮挡金具的检测效果。在包含6 934个训练目标框和1 879个测试目标框的11类金具数据集中进行实验,使用文中方法的金具检测准确率达到了75. 64%,相对于使用原始SSD模型检测准确率提升了4. 73%,且检测框更贴合目标。 展开更多
关键词 金具 SSD 目标检测 iou 斥力损失 遮挡
下载PDF
基于改进边界框回归损失的YOLOv3检测算法 被引量:9
18
作者 沈记全 陈相均 翟海霞 《计算机工程》 CAS CSCD 北大核心 2022年第3期236-243,共8页
YOLOv3检测算法中的边界框回归损失函数对边界框尺度敏感,且与算法检测效果评价标准交并比(IoU)之间的优化不具有强相关性,无法准确反映真值框与预测框之间的重叠情况,造成收敛效果不佳。针对上述问题,提出基于IoU的改进边界框回归损失... YOLOv3检测算法中的边界框回归损失函数对边界框尺度敏感,且与算法检测效果评价标准交并比(IoU)之间的优化不具有强相关性,无法准确反映真值框与预测框之间的重叠情况,造成收敛效果不佳。针对上述问题,提出基于IoU的改进边界框回归损失算法BR-IoU。将IoU作为边界框回归损失函数的损失项,使不同尺度的边界框在回归过程中获得更均衡的损失优化权重。在此基础上,通过添加惩罚项最小化预测框与真值框中心点间围成的矩形面积,并提高预测框与真值框之间宽高比的一致性,从而优化边界框的回归收敛效果。在PASCAL VOC和COCO数据集上的实验结果表明,在不影响实时性的前提下,BR-IoU能够有效提高检测精度,采用BR-IoU的YOLOv3算法在PASCAL VOC 2007测试集上mAP较原YOLOv3算法和G-YOLO算法分别提高2.5和1.51个百分点,在COCO测试集上分别提高2.07和0.66个百分点。 展开更多
关键词 YOLOv3检测算法 边界框回归 交并比 BR-iou损失算法 宽高比
下载PDF
基于改进YOLOv5算法的可回收饮料瓶检测方法研究 被引量:1
19
作者 林一鸣 王宇钢 +1 位作者 季莘翔 徐茁 《辽宁工业大学学报(自然科学版)》 2023年第4期232-238,共7页
针对YOLOv5算法目标检测存在重叠目标漏检率高、检测置信度低的问题,提出基于EA-YOLOv5m模型的可回收饮料瓶检测方法。采用EAM(efficient attention module)注意力模块提升重叠目标检测精度,采用α-IOU Loss函数对损失函数进行改进,提... 针对YOLOv5算法目标检测存在重叠目标漏检率高、检测置信度低的问题,提出基于EA-YOLOv5m模型的可回收饮料瓶检测方法。采用EAM(efficient attention module)注意力模块提升重叠目标检测精度,采用α-IOU Loss函数对损失函数进行改进,提升检测框的定位精度及置信度。实验结果表明,EA-YOLOv5m模型训练的位置损失值和置信度损失值较YOLOv5m模型均有下降,测试的AP_0.5和AP_0.5-0.95较YOLOv5m模型分别提高了0.15%和1.28%,检测速度达到7.8帧/s。针对不同程度遮挡的重叠目标,EA-YOLOv5m模型的检测置信度得到明显提升,分别达到0.81及0.68。该算法可以大幅提升重叠目标检测能力,满足基于视觉的可回收饮料瓶检测应用。 展开更多
关键词 YOLOv5算法 目标检测 可回收饮料瓶 EAM α-iou loss
下载PDF
基于多向特征金字塔的轻量级目标检测算法 被引量:2
20
作者 白创 王英杰 +1 位作者 闫昱 DJUKANOVIC Milena 《液晶与显示》 CAS CSCD 北大核心 2021年第11期1516-1524,共9页
针对实时目标检测算法Tiny YOLOv3存在的深层特征难以提取、实时性不能满足需求、边界框定位不够准确的问题,提出一种改进的轻量级检测模型MTYOLO(MdFPN Tiny YOLOv3)。该模型构造多向特征金字塔网络(MdFPN)代替简单级联,充分完成了多... 针对实时目标检测算法Tiny YOLOv3存在的深层特征难以提取、实时性不能满足需求、边界框定位不够准确的问题,提出一种改进的轻量级检测模型MTYOLO(MdFPN Tiny YOLOv3)。该模型构造多向特征金字塔网络(MdFPN)代替简单级联,充分完成了多层语义信息的提取与融合;使用深度可分离卷积代替标准卷积,有效降低网络复杂度,提升了检测的实时性能;采用Complete IOU loss(CIOU loss)代替MSE作为回归损失函数,极大地提高了边界框的回归精度。在PASCAL VOC和COCO数据集上对MTYOLO进行测试,结果表明,改进后模型的mAP最高可达到83.7%,检测速度最快可达到205 fps。 展开更多
关键词 目标检测 特征金字塔网络 深度可分离卷积 Complete iou loss
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部