针对车联网中高通信需求和高移动性造成的车对车链路(Vehicle to Vehicle,V2V)间的信道冲突及网络效用低下的问题,提出了一种基于并联门控循环单元(Gated Recurrent Unit,GRU)和长短期记忆网络(Long Short-Term Memory,LSTM)的组合模型...针对车联网中高通信需求和高移动性造成的车对车链路(Vehicle to Vehicle,V2V)间的信道冲突及网络效用低下的问题,提出了一种基于并联门控循环单元(Gated Recurrent Unit,GRU)和长短期记忆网络(Long Short-Term Memory,LSTM)的组合模型的车联网信道分配算法。算法以降低V2V链路信道碰撞率和空闲率为目标,将信道分配问题建模为分布式深度强化学习问题,使每条V2V链路作为单个智能体,并通过最大化每回合平均奖励的方式进行集中训练、分布式执行。在训练过程中借助GRU训练周期短和LSTM拟合精度高的组合优势去拟合深度双重Q学习中Q函数,使V2V链路能快速地学习优化信道分配策略,合理地复用车对基础设施(Vehicle to Infrastructure,V2I)链路的信道资源,实现网络效用最大化。仿真结果表明,与单纯使用GRU或者LSTM网络模型的分配算法相比,该算法在收敛速度方面加快了5个训练回合,V2V链路间的信道碰撞率和空闲率降低了约27%,平均成功率提升了约10%。展开更多
Wireless technology is transforming the future of transportation through the development of the Internet of Vehicles(IoV).However,intricate security challenges are intertwinedwith technological progress:Vehicular ad h...Wireless technology is transforming the future of transportation through the development of the Internet of Vehicles(IoV).However,intricate security challenges are intertwinedwith technological progress:Vehicular ad hoc Networks(VANETs),a core component of IoV,face security issues,particularly the Black Hole Attack(BHA).This malicious attack disrupts the seamless flow of data and threatens the network’s overall reliability;also,BHA strategically disrupts communication pathways by dropping data packets from legitimate nodes altogether.Recognizing the importance of this challenge,we have introduced a new solution called ad hoc On-Demand Distance Vector-Reputation-based mechanism Local Outlier Factor(AODV-RL).The significance of AODVRL lies in its unique approach:it verifies and confirms the trustworthiness of network components,providing robust protection against BHA.An additional safety layer is established by implementing the Local Outlier Factor(LOF),which detects and addresses abnormal network behaviors.Rigorous testing of our solution has revealed its remarkable ability to enhance communication in VANETs.Specifically,Our experimental results achieve message delivery ratios of up to 94.25%andminimal packet loss ratios of just 0.297%.Based on our experimental results,the proposedmechanismsignificantly improves VANET communication reliability and security.These results promise a more secure and dependable future for IoV,capable of transforming transportation safety and efficiency.展开更多
车联网中,如何有效选择缓存位置和缓存内容对于提高整体网络性能至关重要。针对上述问题,引入了内容中心网络技术,提出了一种新的优化缓存策略——缓存位置和缓存内容的选择取决于车辆节点值和内容流行度(Vehicle Node Value and Conten...车联网中,如何有效选择缓存位置和缓存内容对于提高整体网络性能至关重要。针对上述问题,引入了内容中心网络技术,提出了一种新的优化缓存策略——缓存位置和缓存内容的选择取决于车辆节点值和内容流行度(Vehicle Node Value and Content Popularity,VNVCP)。首先,定义了连通性、中间中心性和特征向量中心性3个车辆节点属性用来评估车辆节点的值,具有不同值的车辆节点缓存具有不同流行度的内容,内容的重要性由其受欢迎程度决定。其次,该策略利用不同类型内容受欢迎程度的差异确保缓存内容分布均匀,同时评估来自多个属性的车辆节点的值以提高车辆节点利用率。仿真结果表明,VNVCP在缓存命中率、平均跳数和传输延迟方面明显优于传统的LCE(Leave Copy Every where)、Prob(0.5)和MPC(Most Popular Content)。展开更多
为了满足车联网中不同应用的服务质量(Quality of Service,QoS)要求,提出了一种基于网络切片技术的车联网频谱资源分配方案。该方案考虑数据接入控制,通过联合优化频谱资源块(Resource Block,RB)分配和车辆信号发射功率控制,在安全服务...为了满足车联网中不同应用的服务质量(Quality of Service,QoS)要求,提出了一种基于网络切片技术的车联网频谱资源分配方案。该方案考虑数据接入控制,通过联合优化频谱资源块(Resource Block,RB)分配和车辆信号发射功率控制,在安全服务切片低时延高可靠性的约束下,最大化信息娱乐服务切片的平均和吞吐量。将车联网资源管理建模为一个混合整数随机优化问题,利用李雅普诺夫(Lyapunov)优化理论将该优化问题分解为接入控制和RB分配与功率控制两个子问题,并分别对其进行求解,得到每个时隙的接入控制和资源分配方案。仿真结果表明,所提出的资源分配方案能够有效提高信息娱乐服务切片的平均和吞吐量,并且可以通过调整引入的控制参数值来实现吞吐量和时延的动态平衡。同时,与已有方案相比,该方案具有更好的时延性能。展开更多
With the development of artificial intelligence(AI)and 5G technology,the integration of sensing,communication and computing in the Internet of Vehicles(Io V)is becoming a trend.However,the large amount of data transmi...With the development of artificial intelligence(AI)and 5G technology,the integration of sensing,communication and computing in the Internet of Vehicles(Io V)is becoming a trend.However,the large amount of data transmission and the computing requirements of intelligent tasks lead to the complex resource management problems.In view of the above challenges,this paper proposes a tasks-oriented joint resource allocation scheme(TOJRAS)in the scenario of Io V.First,this paper proposes a system model with sensing,communication,and computing integration for multiple intelligent tasks with different requirements in the Io V.Secondly,joint resource allocation problems for real-time tasks and delay-tolerant tasks in the Io V are constructed respectively,including communication,computing and caching resources.Thirdly,a distributed deep Q-network(DDQN)based algorithm is proposed to solve the optimization problems,and the convergence and complexity of the algorithm are discussed.Finally,the experimental results based on real data sets verify the performance advantages of the proposed resource allocation scheme,compared to the existing ones.The exploration efficiency of our proposed DDQN-based algorithm is improved by at least about 5%,and our proposed resource allocation scheme improves the m AP performance by about 0.15 under resource constraints.展开更多
With the increasing use of distributed electric vehicles(EV),energy management in the Internet of vehicles(IoV)has attracted more attention,especially demand response(DR)management to achieve efficient energy manageme...With the increasing use of distributed electric vehicles(EV),energy management in the Internet of vehicles(IoV)has attracted more attention,especially demand response(DR)management to achieve efficient energy management in IoV.Therefore,it is a tendency to introduce distributed energy such as renewable energy into the existing supply system.For optimizing the energy internet(EI)for IoV,in this paper,we introduce blockchain into energy internet and propose a secure EI scheme for IoV based on post-quantum blockchain,which provides the new information services and an incentive cooperation mechanism for the current energy IoV system.Firstly,based on the principles of constructing a short lattice basis and preimage sampling,a lattice signature scheme is proposed and used in blockchain for authentication,which provides anti-quantum security.Secondly,we design the EI based on the post-quantum blockchain model.Lastly,based on this model,we design a secure EI scheme for IoV based on post-quantum blockchain.Through our analysis and experiment,this new scheme can increase the efficiency of energy utilization and enrich EI’s application in IoV.In particular,we further illustrate and analyze its performance.It is shown that EI based on post-quantum blockchain is more secure and efficient in information communications and energy trading.展开更多
This paper is focused on the multiuser implementation of fusion of radar and communication(RadCom)in internet-of-vehicles(IoV)scenarios.Traditional time-division multiple access(TDMA)technology degrades the velocity d...This paper is focused on the multiuser implementation of fusion of radar and communication(RadCom)in internet-of-vehicles(IoV)scenarios.Traditional time-division multiple access(TDMA)technology degrades the velocity detection performance of orthogonal frequency-division multiplexing(OFDM)-based RadCom systems.We propose a new TDMA approach for OFDM-based RadCom systems,where multiuser communication and radar detection are completed synchronously.We consider a continuous-wave TDMA OFDM structure in which random user data or Zadoff-Chu(ZC)sequences are transmitted in one symbol duration to ensure detection performance.As an application of interference cancellation method,user data demodulation and environment sensing can be simultaneously accomplished by our proposed approach.We carry out numerical evaluation and show wireless communication and radar detection performance over the continuous-wave TDMA OFDM-based RadCom approach.展开更多
The huge increase in the communication network rate has made the application fields and scenarios for vehicular ad hoc networks more abundant and diversified and proposed more requirements for the efficiency and quali...The huge increase in the communication network rate has made the application fields and scenarios for vehicular ad hoc networks more abundant and diversified and proposed more requirements for the efficiency and quality of data transmission.To improve the limited communication distance and poor communication quality of the Internet of Vehicles(IoV),an optimal intelligent routing algorithm is proposed in this paper.Combined multiweight decision algorithm with the greedy perimeter stateless routing protocol,designed and evaluated standardized function for link stability.Linear additive weighting is used to optimize link stability and distance to improve the packet delivery rate of the IoV.The blockchain system is used as the storage structure for relay data,and the smart contract incentive algorithm based on machine learning is used to encourage relay vehicles to provide more communication bandwidth for data packet transmission.The proposed scheme is simulated and analyzed under different scenarios and different parameters.The experimental results demonstrate that the proposed scheme can effectively reduce the packet loss rate and improve system performance.展开更多
The improvement of the quality and efficiency of vehicle wireless network data transmission is always a key concern in the Internet of Vehicles(IoV).Routing transmission solved the limitation of transmission distance ...The improvement of the quality and efficiency of vehicle wireless network data transmission is always a key concern in the Internet of Vehicles(IoV).Routing transmission solved the limitation of transmission distance to a certain extent.Traditional routing algorithm cannot adapt to complex traffic environment,resulting in low transmission efficiency.In order to improve the transmission success rate and quality of vehicle network routing transmission,make the routing algorithm more suitable for complex traffic environment,and reduce transmission power consumption to improve energy efficiency,a comprehensive optimized routing transmission algorithm is proposed.Based on the routing transmission algorithm,an optimization algorithmbased on road condition,vehicle status and network performance is proposed to improve the success rate of routing transmission in the IoV.Relative distance difference and density are used as decision-making indicators to measure Road Side Unit(RSU)assisted transmission.And the Ambient backscatter communication(AmBC)technology and energy collection are used to reduce the energy consumption of routing relay transmission.An energy collection optimization algorithm is proposed to optimize the energy efficiency of AmBC and improve the energy efficiency of transmission.Simulation results show that the proposed routing optimization algorithm can effectively improve the success rate of packet transmission in vehicular ad hoc networks(VANETs),and theAmBC optimization algorithmcan effectively reduce energy consumption in the transmission process.The proposed optimization algorithm achieves comprehensive optimization of routing transmission performance and energy efficiency.展开更多
Federated Learning(FL)enables collaborative and privacy-preserving training of machine learning models within the Internet of Vehicles(IoV)realm.While FL effectively tackles privacy concerns,it also imposes significan...Federated Learning(FL)enables collaborative and privacy-preserving training of machine learning models within the Internet of Vehicles(IoV)realm.While FL effectively tackles privacy concerns,it also imposes significant resource requirements.In traditional FL,trained models are transmitted to a central server for global aggregation,typically in the cloud.This approach often leads to network congestion and bandwidth limitations when numerous devices communicate with the same server.The need for Flexible Global Aggregation and Dynamic Client Selection in FL for the IoV arises from the inherent characteristics of IoV environments.These include diverse and distributed data sources,varying data quality,and limited communication resources.By employing dynamic client selection,we can prioritize relevant and high-quality data sources,enhancing model accuracy.To address this issue,we propose an FL framework that selects global aggregation nodes dynamically rather than a single fixed aggregator.Flexible global aggregation ensures efficient utilization of limited network resources while accommodating the dynamic nature of IoV data sources.This approach optimizes both model performance and resource allocation,making FL in IoV more effective and adaptable.The selection of the global aggregation node is based on workload and communication speed considerations.Additionally,our framework overcomes the constraints associated with network,computational,and energy resources in the IoV environment by implementing a client selection algorithm that dynamically adjusts participants according to predefined parameters.Our approach surpasses Federated Averaging(FedAvg)and Hierarchical FL(HFL)regarding energy consumption,delay,and accuracy,yielding superior results.展开更多
The car-hailing platform based on Internet of Vehicles(IoV)tech-nology greatly facilitates passengers’daily car-hailing,enabling drivers to obtain orders more efficiently and obtain more significant benefits.However,...The car-hailing platform based on Internet of Vehicles(IoV)tech-nology greatly facilitates passengers’daily car-hailing,enabling drivers to obtain orders more efficiently and obtain more significant benefits.However,to match the driver closest to the passenger,it is often necessary to process the location information of the passenger and driver,which poses a considerable threat to privacy disclosure to the passenger and driver.Targeting these issues,in this paper,by combining blockchain and Paillier homomorphic encryption algorithm,we design a secure blockchain-enabled IoV scheme with privacy protection for online car-hailing.In this scheme,firstly,we propose an encryp-tion scheme based on the lattice.Thus,the location information of passengers and drivers is encrypted in this system.Secondly,by introducing Paillier homomorphic encryption algorithm,the location matching of passengers and drivers is carried out in the ciphertext state to protect their location privacy.At last,blockchain technology is used to record the transactions in online car-hailing,which can provide a security guarantee for passengers and drivers.And we further analyze the security and performance of this scheme.Compared with other schemes,the experimental results show that the proposed scheme can protect the user’s location privacy and have a better performance.展开更多
The content-centric networking(CCN)architecture allows access to the content through name,instead of the physical location where the content is stored,which makes it a more robust and flexible content-based architectu...The content-centric networking(CCN)architecture allows access to the content through name,instead of the physical location where the content is stored,which makes it a more robust and flexible content-based architecture.Nevertheless,in CCN,the broadcast nature of vehicles on the Internet of Vehicles(IoV)results in latency and network congestion.The IoVbased content distribution is an emerging concept in which all the vehicles are connected via the internet.Due to the high mobility of vehicles,however,IoV applications have different network requirements that differ from those of many other networks,posing new challenges.Considering this,a novel strategy mediator framework is presented in this paper for managing the network resources efficiently.Software-defined network(SDN)controller is deployed for improving the routing flexibility and facilitating in the interinteroperability of heterogeneous devices within the network.Due to the limited memory of edge devices,the delectable bloom filters are used for caching and storage.Finally,the proposed scheme is compared with the existing variants for validating its effectiveness.展开更多
As Vehicular ad hoc networks (VANETs) become more sophisticated, the importance of integrating data protection and cybersecurity is increasingly evident. This paper offers a comprehensive investigation into the challe...As Vehicular ad hoc networks (VANETs) become more sophisticated, the importance of integrating data protection and cybersecurity is increasingly evident. This paper offers a comprehensive investigation into the challenges and solutions associated with the privacy implications within VANETs, rooted in an intricate landscape of cross-jurisdictional data protection regulations. Our examination underscores the unique nature of VANETs, which, unlike other ad-hoc networks, demand heightened security and privacy considerations due to their exposure to sensitive data such as vehicle identifiers, routes, and more. Through a rigorous exploration of pseudonymization schemes, with a notable emphasis on the Density-based Location Privacy (DLP) method, we elucidate the potential to mitigate and sometimes sidestep the heavy compliance burdens associated with data protection laws. Furthermore, this paper illuminates the cybersecurity vulnerabilities inherent to VANETs, proposing robust countermeasures, including secure data transmission protocols. In synthesizing our findings, we advocate for the proactive adoption of protective mechanisms to facilitate the broader acceptance of VANET technology while concurrently addressing regulatory and cybersecurity hurdles.展开更多
文摘针对车联网中高通信需求和高移动性造成的车对车链路(Vehicle to Vehicle,V2V)间的信道冲突及网络效用低下的问题,提出了一种基于并联门控循环单元(Gated Recurrent Unit,GRU)和长短期记忆网络(Long Short-Term Memory,LSTM)的组合模型的车联网信道分配算法。算法以降低V2V链路信道碰撞率和空闲率为目标,将信道分配问题建模为分布式深度强化学习问题,使每条V2V链路作为单个智能体,并通过最大化每回合平均奖励的方式进行集中训练、分布式执行。在训练过程中借助GRU训练周期短和LSTM拟合精度高的组合优势去拟合深度双重Q学习中Q函数,使V2V链路能快速地学习优化信道分配策略,合理地复用车对基础设施(Vehicle to Infrastructure,V2I)链路的信道资源,实现网络效用最大化。仿真结果表明,与单纯使用GRU或者LSTM网络模型的分配算法相比,该算法在收敛速度方面加快了5个训练回合,V2V链路间的信道碰撞率和空闲率降低了约27%,平均成功率提升了约10%。
文摘Wireless technology is transforming the future of transportation through the development of the Internet of Vehicles(IoV).However,intricate security challenges are intertwinedwith technological progress:Vehicular ad hoc Networks(VANETs),a core component of IoV,face security issues,particularly the Black Hole Attack(BHA).This malicious attack disrupts the seamless flow of data and threatens the network’s overall reliability;also,BHA strategically disrupts communication pathways by dropping data packets from legitimate nodes altogether.Recognizing the importance of this challenge,we have introduced a new solution called ad hoc On-Demand Distance Vector-Reputation-based mechanism Local Outlier Factor(AODV-RL).The significance of AODVRL lies in its unique approach:it verifies and confirms the trustworthiness of network components,providing robust protection against BHA.An additional safety layer is established by implementing the Local Outlier Factor(LOF),which detects and addresses abnormal network behaviors.Rigorous testing of our solution has revealed its remarkable ability to enhance communication in VANETs.Specifically,Our experimental results achieve message delivery ratios of up to 94.25%andminimal packet loss ratios of just 0.297%.Based on our experimental results,the proposedmechanismsignificantly improves VANET communication reliability and security.These results promise a more secure and dependable future for IoV,capable of transforming transportation safety and efficiency.
文摘车联网中,如何有效选择缓存位置和缓存内容对于提高整体网络性能至关重要。针对上述问题,引入了内容中心网络技术,提出了一种新的优化缓存策略——缓存位置和缓存内容的选择取决于车辆节点值和内容流行度(Vehicle Node Value and Content Popularity,VNVCP)。首先,定义了连通性、中间中心性和特征向量中心性3个车辆节点属性用来评估车辆节点的值,具有不同值的车辆节点缓存具有不同流行度的内容,内容的重要性由其受欢迎程度决定。其次,该策略利用不同类型内容受欢迎程度的差异确保缓存内容分布均匀,同时评估来自多个属性的车辆节点的值以提高车辆节点利用率。仿真结果表明,VNVCP在缓存命中率、平均跳数和传输延迟方面明显优于传统的LCE(Leave Copy Every where)、Prob(0.5)和MPC(Most Popular Content)。
文摘为了满足车联网中不同应用的服务质量(Quality of Service,QoS)要求,提出了一种基于网络切片技术的车联网频谱资源分配方案。该方案考虑数据接入控制,通过联合优化频谱资源块(Resource Block,RB)分配和车辆信号发射功率控制,在安全服务切片低时延高可靠性的约束下,最大化信息娱乐服务切片的平均和吞吐量。将车联网资源管理建模为一个混合整数随机优化问题,利用李雅普诺夫(Lyapunov)优化理论将该优化问题分解为接入控制和RB分配与功率控制两个子问题,并分别对其进行求解,得到每个时隙的接入控制和资源分配方案。仿真结果表明,所提出的资源分配方案能够有效提高信息娱乐服务切片的平均和吞吐量,并且可以通过调整引入的控制参数值来实现吞吐量和时延的动态平衡。同时,与已有方案相比,该方案具有更好的时延性能。
基金supported by The Fundamental Research Funds for the Central Universities(No.2021XD-A01-1)The National Natural Science Foundation of China(No.92067202)。
文摘With the development of artificial intelligence(AI)and 5G technology,the integration of sensing,communication and computing in the Internet of Vehicles(Io V)is becoming a trend.However,the large amount of data transmission and the computing requirements of intelligent tasks lead to the complex resource management problems.In view of the above challenges,this paper proposes a tasks-oriented joint resource allocation scheme(TOJRAS)in the scenario of Io V.First,this paper proposes a system model with sensing,communication,and computing integration for multiple intelligent tasks with different requirements in the Io V.Secondly,joint resource allocation problems for real-time tasks and delay-tolerant tasks in the Io V are constructed respectively,including communication,computing and caching resources.Thirdly,a distributed deep Q-network(DDQN)based algorithm is proposed to solve the optimization problems,and the convergence and complexity of the algorithm are discussed.Finally,the experimental results based on real data sets verify the performance advantages of the proposed resource allocation scheme,compared to the existing ones.The exploration efficiency of our proposed DDQN-based algorithm is improved by at least about 5%,and our proposed resource allocation scheme improves the m AP performance by about 0.15 under resource constraints.
基金supported by National Key R&D Program of China(Grant No.2020YFB1805403)Major Scientific and Technological Special Project of Guizhou Province(Grant No.20183001)+3 种基金Foundation of Guizhou Provincial Key Laboratory of Public Big Data(Grant Nos.2018BDKFJJ021,2018BDKFJJ020,2017BDKFJJ015,2018BDKFJJ008)the Fundamental Research Funds for the Central Universities(CUC22GZ012)Beijing Municipal Natural Science Foundation(M22002,4212019)National Natural Science Foundation of China(62172005).
文摘With the increasing use of distributed electric vehicles(EV),energy management in the Internet of vehicles(IoV)has attracted more attention,especially demand response(DR)management to achieve efficient energy management in IoV.Therefore,it is a tendency to introduce distributed energy such as renewable energy into the existing supply system.For optimizing the energy internet(EI)for IoV,in this paper,we introduce blockchain into energy internet and propose a secure EI scheme for IoV based on post-quantum blockchain,which provides the new information services and an incentive cooperation mechanism for the current energy IoV system.Firstly,based on the principles of constructing a short lattice basis and preimage sampling,a lattice signature scheme is proposed and used in blockchain for authentication,which provides anti-quantum security.Secondly,we design the EI based on the post-quantum blockchain model.Lastly,based on this model,we design a secure EI scheme for IoV based on post-quantum blockchain.Through our analysis and experiment,this new scheme can increase the efficiency of energy utilization and enrich EI’s application in IoV.In particular,we further illustrate and analyze its performance.It is shown that EI based on post-quantum blockchain is more secure and efficient in information communications and energy trading.
基金supported in part by the National Natural Science Foundation of China(No.61971092,No.62222121)in part by the Sichuan Province Foundation for Distinguished Young Scholars(2020JDJQ0023)in part by the Fundamental Research Funds for the Central Universities(ZYGX2020ZB045,ZYGX2019J123).
文摘This paper is focused on the multiuser implementation of fusion of radar and communication(RadCom)in internet-of-vehicles(IoV)scenarios.Traditional time-division multiple access(TDMA)technology degrades the velocity detection performance of orthogonal frequency-division multiplexing(OFDM)-based RadCom systems.We propose a new TDMA approach for OFDM-based RadCom systems,where multiuser communication and radar detection are completed synchronously.We consider a continuous-wave TDMA OFDM structure in which random user data or Zadoff-Chu(ZC)sequences are transmitted in one symbol duration to ensure detection performance.As an application of interference cancellation method,user data demodulation and environment sensing can be simultaneously accomplished by our proposed approach.We carry out numerical evaluation and show wireless communication and radar detection performance over the continuous-wave TDMA OFDM-based RadCom approach.
基金supported by the National Key R&D Program of China (2020YFB2008400)LAGEO of Chinese Academy of Sciences (LAGEO-2019-2)+11 种基金Program for Science&Technology Innovation Talents in the University of Henan Province (20HASTIT022)21th Project of the Xizang Cultural Inheritance and Development Collaborative Innovation Center in 2018 (21IRTSTHN015)Natural Science Foundation of Xizang Named“Research of Key Technology of Millimeter Wave MIMO Secure Transmission with Relay Enhancement”in 2018Xizang Autonomous Region Education Science“13th Five-year Plan”Major Project for 2018 (XZJKY201803)Natural Science Foundation of Henan under Grant 202300410126Young Backbone Teachers in Henan Province (2018GGJS049)Henan Province Young Talent Lift Project (2020HYTP009)Program for Innovative Research Team in University of Henan Province (21IRTSTHNO15)Equipment Pre-research Joint Research Program of Ministry of Education (8091B032129)Training Program for Young Scholar of Henan Province for Colleges and Universities under Grand (2020GGJS172)Program for Science&Technology Innovation Talents in Universities of Henan Province under Grand (22HASTIT020)Henan Province Science Fund for Distinguished Young Scholars (222300420006).
文摘The huge increase in the communication network rate has made the application fields and scenarios for vehicular ad hoc networks more abundant and diversified and proposed more requirements for the efficiency and quality of data transmission.To improve the limited communication distance and poor communication quality of the Internet of Vehicles(IoV),an optimal intelligent routing algorithm is proposed in this paper.Combined multiweight decision algorithm with the greedy perimeter stateless routing protocol,designed and evaluated standardized function for link stability.Linear additive weighting is used to optimize link stability and distance to improve the packet delivery rate of the IoV.The blockchain system is used as the storage structure for relay data,and the smart contract incentive algorithm based on machine learning is used to encourage relay vehicles to provide more communication bandwidth for data packet transmission.The proposed scheme is simulated and analyzed under different scenarios and different parameters.The experimental results demonstrate that the proposed scheme can effectively reduce the packet loss rate and improve system performance.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 62271192in part by Central Plains Talents Plan under Grant ZYYCYU202012173+9 种基金in part by theNationalKeyR&DProgramof China underGrant 2020YFB2008400in part by the Program of CEMEE under Grant 2022Z00202Bin part by the LAGEO of Chinese Academy of Sciences underGrantLAGEO-2019-2in part by the Program for Science and Technology Innovation Talents in the University of Henan Province under Grant 20HASTIT022in part by the Natural Science Foundation of Henan under Grant 202300410126in part by the Program for Innovative Research Team in University of Henan Province under Grant 21IRTSTHN015in part by the Equipment Pre-Research Joint Research Program of Ministry of Education under Grant 8091B032129in part by the Training Program for Young Scholar of Henan Province for Colleges and Universities under Grant 2020GGJS172in part by the Program for Science and Technology Innovation Talents in Universities of Henan Province under Grant 22HASTIT020in part by the Henan Province Science Fund for Distinguished Young Scholars under Grant 222300420006.
文摘The improvement of the quality and efficiency of vehicle wireless network data transmission is always a key concern in the Internet of Vehicles(IoV).Routing transmission solved the limitation of transmission distance to a certain extent.Traditional routing algorithm cannot adapt to complex traffic environment,resulting in low transmission efficiency.In order to improve the transmission success rate and quality of vehicle network routing transmission,make the routing algorithm more suitable for complex traffic environment,and reduce transmission power consumption to improve energy efficiency,a comprehensive optimized routing transmission algorithm is proposed.Based on the routing transmission algorithm,an optimization algorithmbased on road condition,vehicle status and network performance is proposed to improve the success rate of routing transmission in the IoV.Relative distance difference and density are used as decision-making indicators to measure Road Side Unit(RSU)assisted transmission.And the Ambient backscatter communication(AmBC)technology and energy collection are used to reduce the energy consumption of routing relay transmission.An energy collection optimization algorithm is proposed to optimize the energy efficiency of AmBC and improve the energy efficiency of transmission.Simulation results show that the proposed routing optimization algorithm can effectively improve the success rate of packet transmission in vehicular ad hoc networks(VANETs),and theAmBC optimization algorithmcan effectively reduce energy consumption in the transmission process.The proposed optimization algorithm achieves comprehensive optimization of routing transmission performance and energy efficiency.
基金supported by the UAE University UPAR Research Grant Program under Grant 31T122.
文摘Federated Learning(FL)enables collaborative and privacy-preserving training of machine learning models within the Internet of Vehicles(IoV)realm.While FL effectively tackles privacy concerns,it also imposes significant resource requirements.In traditional FL,trained models are transmitted to a central server for global aggregation,typically in the cloud.This approach often leads to network congestion and bandwidth limitations when numerous devices communicate with the same server.The need for Flexible Global Aggregation and Dynamic Client Selection in FL for the IoV arises from the inherent characteristics of IoV environments.These include diverse and distributed data sources,varying data quality,and limited communication resources.By employing dynamic client selection,we can prioritize relevant and high-quality data sources,enhancing model accuracy.To address this issue,we propose an FL framework that selects global aggregation nodes dynamically rather than a single fixed aggregator.Flexible global aggregation ensures efficient utilization of limited network resources while accommodating the dynamic nature of IoV data sources.This approach optimizes both model performance and resource allocation,making FL in IoV more effective and adaptable.The selection of the global aggregation node is based on workload and communication speed considerations.Additionally,our framework overcomes the constraints associated with network,computational,and energy resources in the IoV environment by implementing a client selection algorithm that dynamically adjusts participants according to predefined parameters.Our approach surpasses Federated Averaging(FedAvg)and Hierarchical FL(HFL)regarding energy consumption,delay,and accuracy,yielding superior results.
基金supported by National Key R&D Program of China(Grant No.2020YFB1805403)Major Scientific and Technological Special Project of Guizhou Province(Grant No.20183001)+1 种基金Foundation of Guizhou Provincial Key Laboratory of Public Big Data(Grant Nos.2018BDKFJJ021,2018BDKFJJ020,2017BDKFJJ015,2018BDKFJJ008)the Fundamental Research Funds for the Central Universities(CUC210A003).
文摘The car-hailing platform based on Internet of Vehicles(IoV)tech-nology greatly facilitates passengers’daily car-hailing,enabling drivers to obtain orders more efficiently and obtain more significant benefits.However,to match the driver closest to the passenger,it is often necessary to process the location information of the passenger and driver,which poses a considerable threat to privacy disclosure to the passenger and driver.Targeting these issues,in this paper,by combining blockchain and Paillier homomorphic encryption algorithm,we design a secure blockchain-enabled IoV scheme with privacy protection for online car-hailing.In this scheme,firstly,we propose an encryp-tion scheme based on the lattice.Thus,the location information of passengers and drivers is encrypted in this system.Secondly,by introducing Paillier homomorphic encryption algorithm,the location matching of passengers and drivers is carried out in the ciphertext state to protect their location privacy.At last,blockchain technology is used to record the transactions in online car-hailing,which can provide a security guarantee for passengers and drivers.And we further analyze the security and performance of this scheme.Compared with other schemes,the experimental results show that the proposed scheme can protect the user’s location privacy and have a better performance.
基金supported by“Human Resources Program in Energy Technology”of the Korea Institute of Energy Technology Evaluation and Planning(KETEP),granted financial resources from the Ministry of Trade,Industry&Energy,Republic of Korea(No.20204010600090).
文摘The content-centric networking(CCN)architecture allows access to the content through name,instead of the physical location where the content is stored,which makes it a more robust and flexible content-based architecture.Nevertheless,in CCN,the broadcast nature of vehicles on the Internet of Vehicles(IoV)results in latency and network congestion.The IoVbased content distribution is an emerging concept in which all the vehicles are connected via the internet.Due to the high mobility of vehicles,however,IoV applications have different network requirements that differ from those of many other networks,posing new challenges.Considering this,a novel strategy mediator framework is presented in this paper for managing the network resources efficiently.Software-defined network(SDN)controller is deployed for improving the routing flexibility and facilitating in the interinteroperability of heterogeneous devices within the network.Due to the limited memory of edge devices,the delectable bloom filters are used for caching and storage.Finally,the proposed scheme is compared with the existing variants for validating its effectiveness.
文摘As Vehicular ad hoc networks (VANETs) become more sophisticated, the importance of integrating data protection and cybersecurity is increasingly evident. This paper offers a comprehensive investigation into the challenges and solutions associated with the privacy implications within VANETs, rooted in an intricate landscape of cross-jurisdictional data protection regulations. Our examination underscores the unique nature of VANETs, which, unlike other ad-hoc networks, demand heightened security and privacy considerations due to their exposure to sensitive data such as vehicle identifiers, routes, and more. Through a rigorous exploration of pseudonymization schemes, with a notable emphasis on the Density-based Location Privacy (DLP) method, we elucidate the potential to mitigate and sometimes sidestep the heavy compliance burdens associated with data protection laws. Furthermore, this paper illuminates the cybersecurity vulnerabilities inherent to VANETs, proposing robust countermeasures, including secure data transmission protocols. In synthesizing our findings, we advocate for the proactive adoption of protective mechanisms to facilitate the broader acceptance of VANET technology while concurrently addressing regulatory and cybersecurity hurdles.