As the technology of IP Fast Rerouting (FRR) become mature and the related methods and specifi cation such as RFC5286 accepted as standard, it is expected that IP FRR will be deployed gradually and will enhance the su...As the technology of IP Fast Rerouting (FRR) become mature and the related methods and specifi cation such as RFC5286 accepted as standard, it is expected that IP FRR will be deployed gradually and will enhance the survivability of IP network. This paper presents a different method for computing the Loop-free Alternate Interfaces. The new algorithm can be referred as "Next-Hop Cost Decrease (NHCD)" criterion. Compared with the RFC5286 LFA method, NHCD can handle both the simultaneous link failure and node failure, including multi-link failures. It has less computational complexity and can be used uniformly in the Traffi c Engineering and Network Recovery. However, NHCD is somewhat lower than the LFA method on recovery ratio of single link failure. After a formal description of NHCD criterion and a proof of loopfree alternates, the paper presents the simulation results of NHCD.展开更多
文摘As the technology of IP Fast Rerouting (FRR) become mature and the related methods and specifi cation such as RFC5286 accepted as standard, it is expected that IP FRR will be deployed gradually and will enhance the survivability of IP network. This paper presents a different method for computing the Loop-free Alternate Interfaces. The new algorithm can be referred as "Next-Hop Cost Decrease (NHCD)" criterion. Compared with the RFC5286 LFA method, NHCD can handle both the simultaneous link failure and node failure, including multi-link failures. It has less computational complexity and can be used uniformly in the Traffi c Engineering and Network Recovery. However, NHCD is somewhat lower than the LFA method on recovery ratio of single link failure. After a formal description of NHCD criterion and a proof of loopfree alternates, the paper presents the simulation results of NHCD.