为解决国内在估算方法选择和模型性能优化上存在的问题,利用改进的粒子群算法优化最小二乘支持向量机(least squares support vector machine,LS-SVM)的参数选择方法,对国防科研项目概算价格估算进行研究。依据最小二乘支持向量机原理,...为解决国内在估算方法选择和模型性能优化上存在的问题,利用改进的粒子群算法优化最小二乘支持向量机(least squares support vector machine,LS-SVM)的参数选择方法,对国防科研项目概算价格估算进行研究。依据最小二乘支持向量机原理,通过优化其参数选择方法,建立了IPSO__LS-SVM概算价格估算模型,并对其进行模型训练和结果验证。结果表明:IPSO__LS-SVM方法估算精度更高,参数寻优速度更快,其估算模型具有有效性和优越性。展开更多
文摘为解决国内在估算方法选择和模型性能优化上存在的问题,利用改进的粒子群算法优化最小二乘支持向量机(least squares support vector machine,LS-SVM)的参数选择方法,对国防科研项目概算价格估算进行研究。依据最小二乘支持向量机原理,通过优化其参数选择方法,建立了IPSO__LS-SVM概算价格估算模型,并对其进行模型训练和结果验证。结果表明:IPSO__LS-SVM方法估算精度更高,参数寻优速度更快,其估算模型具有有效性和优越性。