Performance evaluation shows that Hierarchical Mobile IPv6 (HMIPv6) cannot outperform standard Mobile IPv6 (MIPv6) in all scenarios. Thus, adaptive protocol selection under certain circumstances is desired. Moreover, ...Performance evaluation shows that Hierarchical Mobile IPv6 (HMIPv6) cannot outperform standard Mobile IPv6 (MIPv6) in all scenarios. Thus, adaptive protocol selection under certain circumstances is desired. Moreover, it is necessary to balance the load among different Mobility Anchor Points (MAPs). This paper proposes an efficient three-level hierarchical ar- chitecture for mobility management in HMIPv6 networks, in which a mobile node (MN) may register with either a higher/lower MAP or its home agent according to its speed and the number of connecting correspondent nodes (CNs). An admission control algorithm and a replacement algorithm are introduced to achieve load balancing between two MAP levels and among different MAPs within the same MAP level. Admission control is based on the number of CNs but not MNs that an MAP serves. In case there is no capacity for an MN, the MAP chooses an existing MN to be replaced. The replaced MN uses the MAP selection al- gorithm again to choose another mobility agent. Simulation results showed that the proposed scheme achieves better performance not only in reducing the signaling overhead, but also in load balancing among different MAPs.展开更多
In mobile IPv6 networks, the ping-pong type of movement brings about frequent handovers and thus increases signaling burden. This letter proposes a fast seamless handover scheme where the access router keeps the mobil...In mobile IPv6 networks, the ping-pong type of movement brings about frequent handovers and thus increases signaling burden. This letter proposes a fast seamless handover scheme where the access router keeps the mobile node's old reservation till the offline Count Down Timer (CDT) expires in order to reduce handover signaling and delay while the mobile node returns in a very short period of time. Based upon a pois son mobility model, an simple expression for CDT optimization is given out for the scheme to achieve the best cost performance of resource reservation.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 60662003 and 60462003), the Huawei Funds for Scienceand Technology (No. YJCB2004025SP) and the Science and Tech-nology Plan of Zhejiang Province (No. 2005C21002), China
文摘Performance evaluation shows that Hierarchical Mobile IPv6 (HMIPv6) cannot outperform standard Mobile IPv6 (MIPv6) in all scenarios. Thus, adaptive protocol selection under certain circumstances is desired. Moreover, it is necessary to balance the load among different Mobility Anchor Points (MAPs). This paper proposes an efficient three-level hierarchical ar- chitecture for mobility management in HMIPv6 networks, in which a mobile node (MN) may register with either a higher/lower MAP or its home agent according to its speed and the number of connecting correspondent nodes (CNs). An admission control algorithm and a replacement algorithm are introduced to achieve load balancing between two MAP levels and among different MAPs within the same MAP level. Admission control is based on the number of CNs but not MNs that an MAP serves. In case there is no capacity for an MN, the MAP chooses an existing MN to be replaced. The replaced MN uses the MAP selection al- gorithm again to choose another mobility agent. Simulation results showed that the proposed scheme achieves better performance not only in reducing the signaling overhead, but also in load balancing among different MAPs.
基金Supported by the National Natural Science Foundation of China (No.60202005).
文摘In mobile IPv6 networks, the ping-pong type of movement brings about frequent handovers and thus increases signaling burden. This letter proposes a fast seamless handover scheme where the access router keeps the mobile node's old reservation till the offline Count Down Timer (CDT) expires in order to reduce handover signaling and delay while the mobile node returns in a very short period of time. Based upon a pois son mobility model, an simple expression for CDT optimization is given out for the scheme to achieve the best cost performance of resource reservation.