An efficient compensation scheme combining a timedomain Gaussian elimination(GE) channel estimator and a frequency-domain GE equalizer is proposed for orthogonal frequency division multiplexing(OFDM) systems with ...An efficient compensation scheme combining a timedomain Gaussian elimination(GE) channel estimator and a frequency-domain GE equalizer is proposed for orthogonal frequency division multiplexing(OFDM) systems with frequencydependent in-phase and quadrature-phase(IQ) imbalances at both transmitter and receiver.Compared with the traditional least square and least mean square compensation schemes,the proposed compensation scheme achieves the same bit error rate as the ideal IQ branches by using only two training OFDM symbols instead of about 20 OFDM symbols.展开更多
In this paper,a general scheme in digital self-interference cancellation at baseband for zero-IF full-duplex transceivers is presented. We model the self-interference signals specifically with only the nonlinear disto...In this paper,a general scheme in digital self-interference cancellation at baseband for zero-IF full-duplex transceivers is presented. We model the self-interference signals specifically with only the nonlinear distortion signals falling in receiving band considered. A joint estimation algorithm is proposed for compensating the time delay and frequency offset taking into account the IQ amplitude and phase imbalances from mixers. The memory effect and nonlinear distortion are adaptively estimated by the de-correlated normalized least mean square(DNLMS) algorithm. Numerical simulation results demonstrate that the proposed self-interference cancellation scheme can efficiently compensate the self-interference and outperform the existing traditional solutions.展开更多
基金supported by the National Natural Science Fundation of China(6127123061172073)the Open Research Fund of National Mobile Communications Research Lab(2010D13)
文摘An efficient compensation scheme combining a timedomain Gaussian elimination(GE) channel estimator and a frequency-domain GE equalizer is proposed for orthogonal frequency division multiplexing(OFDM) systems with frequencydependent in-phase and quadrature-phase(IQ) imbalances at both transmitter and receiver.Compared with the traditional least square and least mean square compensation schemes,the proposed compensation scheme achieves the same bit error rate as the ideal IQ branches by using only two training OFDM symbols instead of about 20 OFDM symbols.
基金supported in part by the National Natural Science Foundation of China(No.61601027)
文摘In this paper,a general scheme in digital self-interference cancellation at baseband for zero-IF full-duplex transceivers is presented. We model the self-interference signals specifically with only the nonlinear distortion signals falling in receiving band considered. A joint estimation algorithm is proposed for compensating the time delay and frequency offset taking into account the IQ amplitude and phase imbalances from mixers. The memory effect and nonlinear distortion are adaptively estimated by the de-correlated normalized least mean square(DNLMS) algorithm. Numerical simulation results demonstrate that the proposed self-interference cancellation scheme can efficiently compensate the self-interference and outperform the existing traditional solutions.