A systematic analysis of Shanghai and Japan stock indices for the period of Jan. 1984 to Dec. 2005 is performed. After stationarity is verified by ADF (Augmented Dickey-Fuller) test, the power spectrum of the data e...A systematic analysis of Shanghai and Japan stock indices for the period of Jan. 1984 to Dec. 2005 is performed. After stationarity is verified by ADF (Augmented Dickey-Fuller) test, the power spectrum of the data exhibits a power law decay as a whole characterized by 1/f^β processes with possible long range correlations. Subsequently, by using the method of detrended fluctuation analysis (DFA) of the general volatility in the stock markets, we find that the long-range correlations are occurred among the return series and the crossover phenomena exhibit in the results obviously.Further, Shanghai stock market shows long-range correlations in short time scale and shows short-range correlations in long time scale. Whereas, for Japan stock market, the data behaves oppositely absolutely. Last, we compare the varying of scale exponent in large volatility between two stock markets. All results obtained may indicate the possibility of characteristic of multifractal scaling behavior of the financial markets.展开更多
Correlation power analysis(CPA)combined with genetic algorithms(GA)now achieves greater attack efficiency and can recover all subkeys simultaneously.However,two issues in GA-based CPA still need to be addressed:key de...Correlation power analysis(CPA)combined with genetic algorithms(GA)now achieves greater attack efficiency and can recover all subkeys simultaneously.However,two issues in GA-based CPA still need to be addressed:key degeneration and slow evolution within populations.These challenges significantly hinder key recovery efforts.This paper proposes a screening correlation power analysis framework combined with a genetic algorithm,named SFGA-CPA,to address these issues.SFGA-CPA introduces three operations designed to exploit CPA characteris-tics:propagative operation,constrained crossover,and constrained mutation.Firstly,the propagative operation accelerates population evolution by maximizing the number of correct bytes in each individual.Secondly,the constrained crossover and mutation operations effectively address key degeneration by preventing the compromise of correct bytes.Finally,an intelligent search method is proposed to identify optimal parameters,further improving attack efficiency.Experiments were conducted on both simulated environments and real power traces collected from the SAKURA-G platform.In the case of simulation,SFGA-CPA reduces the number of traces by 27.3%and 60%compared to CPA based on multiple screening methods(MS-CPA)and CPA based on simple GA method(SGA-CPA)when the success rate reaches 90%.Moreover,real experimental results on the SAKURA-G platform demonstrate that our approach outperforms other methods.展开更多
Cardiovascular and cerebrovascular events have been observed during night-time associated with periodic breathing including sleep apnea and Cheyne-Stokes respiration. Early detection and treatment is important to redu...Cardiovascular and cerebrovascular events have been observed during night-time associated with periodic breathing including sleep apnea and Cheyne-Stokes respiration. Early detection and treatment is important to reduce night-time events. We clarified the characteristics of the dynamic nature of heartbeats associated with periodic breathing by using detrended fluctuation analysis (DFA). We analyzed heartbeats in eight recordings from the MIT-BIH Polysomnographic database. We observed two crossover points and defined three scaling exponents, β1 (n ≤ 40 beats), β2 (50 ≤ n ≤ 200), and β3 (251 ≤ n ≤ 1584). Compared with β1 (1.21 ± 0.13) and β3 (0.92 ± 0.16), scaling exponent β2 (0.62 ± 0.16) showed the statistically lowest value (p 0.05). And there was a negative relationship between the scaling exponent β2 and apnea/hypopnea index (p 0.05). These results indicate that DFA analysis of heartbeats may be useful for the early detection of sleep associated breathing disorders including sleep apnea and its severity.展开更多
基金supported in part by National Natural Science Foundations of China under Grant Nos.70571027,70401020,10647125,and 10635020by the Ministry of Education of China under Grant No.306022
文摘A systematic analysis of Shanghai and Japan stock indices for the period of Jan. 1984 to Dec. 2005 is performed. After stationarity is verified by ADF (Augmented Dickey-Fuller) test, the power spectrum of the data exhibits a power law decay as a whole characterized by 1/f^β processes with possible long range correlations. Subsequently, by using the method of detrended fluctuation analysis (DFA) of the general volatility in the stock markets, we find that the long-range correlations are occurred among the return series and the crossover phenomena exhibit in the results obviously.Further, Shanghai stock market shows long-range correlations in short time scale and shows short-range correlations in long time scale. Whereas, for Japan stock market, the data behaves oppositely absolutely. Last, we compare the varying of scale exponent in large volatility between two stock markets. All results obtained may indicate the possibility of characteristic of multifractal scaling behavior of the financial markets.
基金supported by the Hunan Provincial Natrual Science Foundation of China(2022JJ30103)“the 14th Five-Year”Key Disciplines and Application Oriented Special Disciplines of Hunan Province(Xiangjiaotong[2022],351)the Science and Technology Innovation Program of Hunan Province(2016TP1020).
文摘Correlation power analysis(CPA)combined with genetic algorithms(GA)now achieves greater attack efficiency and can recover all subkeys simultaneously.However,two issues in GA-based CPA still need to be addressed:key degeneration and slow evolution within populations.These challenges significantly hinder key recovery efforts.This paper proposes a screening correlation power analysis framework combined with a genetic algorithm,named SFGA-CPA,to address these issues.SFGA-CPA introduces three operations designed to exploit CPA characteris-tics:propagative operation,constrained crossover,and constrained mutation.Firstly,the propagative operation accelerates population evolution by maximizing the number of correct bytes in each individual.Secondly,the constrained crossover and mutation operations effectively address key degeneration by preventing the compromise of correct bytes.Finally,an intelligent search method is proposed to identify optimal parameters,further improving attack efficiency.Experiments were conducted on both simulated environments and real power traces collected from the SAKURA-G platform.In the case of simulation,SFGA-CPA reduces the number of traces by 27.3%and 60%compared to CPA based on multiple screening methods(MS-CPA)and CPA based on simple GA method(SGA-CPA)when the success rate reaches 90%.Moreover,real experimental results on the SAKURA-G platform demonstrate that our approach outperforms other methods.
文摘Cardiovascular and cerebrovascular events have been observed during night-time associated with periodic breathing including sleep apnea and Cheyne-Stokes respiration. Early detection and treatment is important to reduce night-time events. We clarified the characteristics of the dynamic nature of heartbeats associated with periodic breathing by using detrended fluctuation analysis (DFA). We analyzed heartbeats in eight recordings from the MIT-BIH Polysomnographic database. We observed two crossover points and defined three scaling exponents, β1 (n ≤ 40 beats), β2 (50 ≤ n ≤ 200), and β3 (251 ≤ n ≤ 1584). Compared with β1 (1.21 ± 0.13) and β3 (0.92 ± 0.16), scaling exponent β2 (0.62 ± 0.16) showed the statistically lowest value (p 0.05). And there was a negative relationship between the scaling exponent β2 and apnea/hypopnea index (p 0.05). These results indicate that DFA analysis of heartbeats may be useful for the early detection of sleep associated breathing disorders including sleep apnea and its severity.