目的探讨IQSEC1是否通过病毒蛋白PB1调控甲型流感病毒的增殖。方法首先克隆甲型流感病毒[A/Shanghai/02/2013(H7N9)]的8个基因;其次,通过免疫共沉淀检测IQ模体Sec7结构域蛋白1(IQSEC1)与聚合酶PB1(PB1)存在相互作用;此外,通过过表达或...目的探讨IQSEC1是否通过病毒蛋白PB1调控甲型流感病毒的增殖。方法首先克隆甲型流感病毒[A/Shanghai/02/2013(H7N9)]的8个基因;其次,通过免疫共沉淀检测IQ模体Sec7结构域蛋白1(IQSEC1)与聚合酶PB1(PB1)存在相互作用;此外,通过过表达或者敲低IQSEC1的方法检测IQSEC1对PB1核定位的影响;最后,过表达或者敲低IQSEC1后检测Influenza A virus[A/Shanghai/02/2013(H7N9)]。结果病毒感染条件下,外源IQSEC1和PB1存在相互作用。当过表达IQSEC1时,细胞中IQSEC1的表达量上升,相应的PB1在细胞核中的定位减少;当用敲低IQSEC1时,细胞中IQSEC1的表达量下降,相应的PB1在细胞核中的定位上升。过表达IQSEC1后,甲型流感病毒的增殖水平下降(P<0.05)。敲低IQSEC1后,甲型流感病毒的增殖水平上升(P<0.05)。结论IQSEC1通过减少甲型流感病毒蛋白PB1的核定位抑制甲型流感病毒的增殖。展开更多
Background: Congenital idiopathic clubfoot is a very common musculoskeletal birth defect, but with no known etiology. Dietz et al. have shown possible linkage in chromosome 3 and 13 in a large, multigenerational famil...Background: Congenital idiopathic clubfoot is a very common musculoskeletal birth defect, but with no known etiology. Dietz et al. have shown possible linkage in chromosome 3 and 13 in a large, multigenerational family with congenital idiopathic clubfoot. Current evidence suggests that muscle development is impaired in patients with congenital idiopathic club-foot, therefore we hypothesized that mutations in genes related to muscle development could be associated with this deformity. From the areas identified in the linkage study, candidate genes SPRY2, RAF1, IQSEC1, LMO7, and UCHL3 were selected based upon their presence in skeletal muscle as well as their involvement in muscle development. Methods: The exons and splice sites of the five genes were screened via sequence-based analysis in a group of 24 patients with congenital idiopathic clubfoot. All single nucleotide polymorphisms (SNPs) found were compared to public databases to determine allelic frequency and amino acid modification. Results: While many SNPs were found, none proved to be significantly associated with the phenotype of congenital idiopathic clubfoot. The SNPs found were shown to be common amongst a non-clubfoot population and to follow the allelic frequency of the general population. Conclusions: Based upon these results, SPRY2, RAF1, IQSEC1, LMO7, and UCHL3 are not likely to be the major causes of congenital idiopathic clubfoot. Given the complexity of myogenesis, many other candidate genes remain that could cause defects in the hypaxial musculature that is invariably observed in congenital idiopathic club-foot. Clinical Relevance: This study further identifies genes which are unlikely to be the direct cause of congenital idiopathic clubfoot. It also helps to eliminate suspected genes found within the given bounds of chromosome 3 and 13.展开更多
文摘目的探讨IQSEC1是否通过病毒蛋白PB1调控甲型流感病毒的增殖。方法首先克隆甲型流感病毒[A/Shanghai/02/2013(H7N9)]的8个基因;其次,通过免疫共沉淀检测IQ模体Sec7结构域蛋白1(IQSEC1)与聚合酶PB1(PB1)存在相互作用;此外,通过过表达或者敲低IQSEC1的方法检测IQSEC1对PB1核定位的影响;最后,过表达或者敲低IQSEC1后检测Influenza A virus[A/Shanghai/02/2013(H7N9)]。结果病毒感染条件下,外源IQSEC1和PB1存在相互作用。当过表达IQSEC1时,细胞中IQSEC1的表达量上升,相应的PB1在细胞核中的定位减少;当用敲低IQSEC1时,细胞中IQSEC1的表达量下降,相应的PB1在细胞核中的定位上升。过表达IQSEC1后,甲型流感病毒的增殖水平下降(P<0.05)。敲低IQSEC1后,甲型流感病毒的增殖水平上升(P<0.05)。结论IQSEC1通过减少甲型流感病毒蛋白PB1的核定位抑制甲型流感病毒的增殖。
文摘Background: Congenital idiopathic clubfoot is a very common musculoskeletal birth defect, but with no known etiology. Dietz et al. have shown possible linkage in chromosome 3 and 13 in a large, multigenerational family with congenital idiopathic clubfoot. Current evidence suggests that muscle development is impaired in patients with congenital idiopathic club-foot, therefore we hypothesized that mutations in genes related to muscle development could be associated with this deformity. From the areas identified in the linkage study, candidate genes SPRY2, RAF1, IQSEC1, LMO7, and UCHL3 were selected based upon their presence in skeletal muscle as well as their involvement in muscle development. Methods: The exons and splice sites of the five genes were screened via sequence-based analysis in a group of 24 patients with congenital idiopathic clubfoot. All single nucleotide polymorphisms (SNPs) found were compared to public databases to determine allelic frequency and amino acid modification. Results: While many SNPs were found, none proved to be significantly associated with the phenotype of congenital idiopathic clubfoot. The SNPs found were shown to be common amongst a non-clubfoot population and to follow the allelic frequency of the general population. Conclusions: Based upon these results, SPRY2, RAF1, IQSEC1, LMO7, and UCHL3 are not likely to be the major causes of congenital idiopathic clubfoot. Given the complexity of myogenesis, many other candidate genes remain that could cause defects in the hypaxial musculature that is invariably observed in congenital idiopathic club-foot. Clinical Relevance: This study further identifies genes which are unlikely to be the direct cause of congenital idiopathic clubfoot. It also helps to eliminate suspected genes found within the given bounds of chromosome 3 and 13.