We investigate the above-threshold ionization of an atom in a combined infrared (IR) and extreme ultraviolet (XUV) two-color laser field and focus on the role of XUV field in the high-order above-threshold ionizat...We investigate the above-threshold ionization of an atom in a combined infrared (IR) and extreme ultraviolet (XUV) two-color laser field and focus on the role of XUV field in the high-order above-threshold ionization (HATI) process. It is demonstrated that, in stark contrast to previous studies, the XUV laser may play a significant role in atomic HATI process, and in particular, the XUV laser can accelerate the ionized electron in a quantized way during the collision between the electron and its parent ion. This process cannot be explained by the elassical three-step model Our results indicate that the previously well-established concept that HATI is an elastic recollision process is broken down.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11474348,61275128,11274050,11334009and 11425414the NSERC of Canada+1 种基金the Canadian Computing Facilities of SHARCnet and ACEnetthe National Basic Research Program of China under Grant No 2013CB922200
文摘We investigate the above-threshold ionization of an atom in a combined infrared (IR) and extreme ultraviolet (XUV) two-color laser field and focus on the role of XUV field in the high-order above-threshold ionization (HATI) process. It is demonstrated that, in stark contrast to previous studies, the XUV laser may play a significant role in atomic HATI process, and in particular, the XUV laser can accelerate the ionized electron in a quantized way during the collision between the electron and its parent ion. This process cannot be explained by the elassical three-step model Our results indicate that the previously well-established concept that HATI is an elastic recollision process is broken down.