Popular video coding standards like H.264 and MPEG working on the principle of motion-compensated pre-dictive coding demand much of the computational resources at the encoder increasing its complexity. Such bulky enco...Popular video coding standards like H.264 and MPEG working on the principle of motion-compensated pre-dictive coding demand much of the computational resources at the encoder increasing its complexity. Such bulky encoders are not suitable for applications like wireless low power surveillance, multimedia sensor networks, wireless PC cameras, mobile camera phones etc. New video coding scheme based on the principle of distributed source coding is looked upon in this paper. This scheme supports a low complexity encoder, at the same time trying to achieve the rate distortion performance of conventional video codecs. Current im-plementation uses LDPC codes for syndrome coding.展开更多
The non-binary(NB) Irregular Repeat Accumulate(IRA) codes, as a subclass of NB LDPC codes, potentially have an excellent error-correcting performance. They are also known to provide linear complexity of encoding, but ...The non-binary(NB) Irregular Repeat Accumulate(IRA) codes, as a subclass of NB LDPC codes, potentially have an excellent error-correcting performance. They are also known to provide linear complexity of encoding, but the basic encoding method with the serial rate-1 accumulator significantly limits the encoder throughput. Then the objective of the research presented in this paper is to develop an encoding method pro- viding significantly increased throughput of an NB-IRA encoder altogether with a flexible code construction methods for the structured(S-NB-IRA) codes eligible for the proposed encoding method. For this purpose, we reformulate the classic encoding algorithm to fit into the partial parallel encoder architecture. We propose the S-NB-IRA encoder block diagram and show that its estimated throughput is proportional to the submatrix size of the parity check matrix, which guarantees a wide complexity- throughput tradeoff. Then, in order to facilitate the S-NB-IRA coding systems design, we present a computer search algorithm for the construction of good S-NB-IRA codes. The algorithm aims at optimizing the code graph topology along with selecting an appropriate non-binary elements in the parity check matrix. Numerical results show that the constructed S-NB-IRA codes significantly outperform the binary IRA and S-IRA codes, while their performance is similar to the best unstructured NB-LDPC codes.展开更多
An iterative detection/decoding algorithm of correlated sources for the LDPC-based relay systems is presented. The signal from the source-destination(S-D) link is formulated as a highly correlated counterpart from the...An iterative detection/decoding algorithm of correlated sources for the LDPC-based relay systems is presented. The signal from the source-destination(S-D) link is formulated as a highly correlated counterpart from the relay-destination(R-D) link. A special XOR vector is defined using the correlated hard decision information blocks from two decoders and the extrinsic information exchanged between the two decoders is derived by the log-likelihood ratio(LLR) associated with the XOR vector. Such the decoding scheme is different from the traditional turbo-like detection/decoding algorithm, where the extrinsic information is computed by the side information and the soft decoder outputs. Simulations show that the presented algorithm has a slightly better performance than the traditional turbo-like algorithm(Taking the(255,175) EG-LDPC code as an example, it achieves about 0.1 dB performance gains aroundBLER=10^(-4)). Furthermore, the presented algorithm requires fewer computing operations per iteration and has faster convergence rate. For example, the average iteration of the presented algorithm is 33 at SNR=1.8 dB, which is about twice faster than that of the turbo-like algorithm, when decoding the(961,721) QC-LDPC code. Therefore, the presented decoding algorithm of correlated sources provides an alternative decoding solution for the LDPC-based relay systems.展开更多
To compress hyperspectral images, a low complexity discrete cosine transform (DCT)-based distributed source coding (DSC) scheme with Gray code is proposed. Unlike most of the existing DSC schemes, which utilize tr...To compress hyperspectral images, a low complexity discrete cosine transform (DCT)-based distributed source coding (DSC) scheme with Gray code is proposed. Unlike most of the existing DSC schemes, which utilize transform in spatial domain, the proposed algorithm applies transform in spectral domain. Set-partitioning-based approach is applied to reorganize DCT coefficients into waveletlike tree structure and extract the sign, refinement, and significance bitplanes. The extracted refinement bits are Gray encoded. Because of the dependency along the line dimension of hyperspectral images, low density paritycheck-(LDPC)-based Slepian-Wolf coder is adopted to implement the DSC strategy. Experimental results on airborne visible/infrared imaging spectrometer (AVIRIS) dataset show that the proposed paradigm achieves up to 6 dB improvement over DSC-based coders which apply transform in spatial domain, with significantly reduced computational complexity and memory storage.展开更多
If the degree distribution is chosen carefully, the irregular low-density parity-check (LDPC) codes can outperform the regular ones. An image transmission system is proposed by combining regular and irregular LDPC cod...If the degree distribution is chosen carefully, the irregular low-density parity-check (LDPC) codes can outperform the regular ones. An image transmission system is proposed by combining regular and irregular LDPC codes with 16QAM/64QAM modulation to improve both efficiency and reliability. Simulaton results show that LDPC codes are good coding schemes over fading channel in image communication with lower system complexity. More over, irregular codes can obtain a code gain of about 0.7 dB compared with regular ones when BER is 10 -4. So the irregular LDPC codes are more suitable for image transmission than the regular codes.展开更多
Distributed source coding (DSC) is applied to interferential multispectral image compression owing to strong correlation among the image frames. Many DSC systems in the literature use feedback channel (FC) to cont...Distributed source coding (DSC) is applied to interferential multispectral image compression owing to strong correlation among the image frames. Many DSC systems in the literature use feedback channel (FC) to control rate at the decoder, which limits the application of DSC. Upon an analysis of the image data, a rate control approach is proposed to avoid FC. Low-complexity motion compensation is applied first to estimate side information at the encoder. Using a polynomial fitting method, a new mathematical model is then derived to estimate rate based on the correlation between the source and side information. The experimental results show that our estimated rate is a good approximation to the actual rate required by FC while incurring a little bit-rate overhead. Our compression scheme performs comparable with the FC based DSC system and outperforms JPEG2000 significantly.展开更多
In order to provide ultra low-latency and high energy-efficient communication for intelligences,the sixth generation(6G)wireless communication networks need to break out of the dilemma of the depleting gain of the sep...In order to provide ultra low-latency and high energy-efficient communication for intelligences,the sixth generation(6G)wireless communication networks need to break out of the dilemma of the depleting gain of the separated optimization paradigm.In this context,this paper provides a comprehensive tutorial that overview how joint source-channel coding(JSCC)can be employed for improving overall system performance.For the purpose,we first introduce the communication requirements and performance metrics for 6G.Then,we provide an overview of the source-channel separation theorem and why it may not hold in practical applications.In addition,we focus on two new JSCC schemes called the double low-density parity-check(LDPC)codes and the double polar codes,respectively,giving their detailed coding and decoding processes and corresponding performance simulations.In a nutshell,this paper constitutes a tutorial on the JSCC scheme tailored to the needs of future 6G communications.展开更多
In the present communication, we have obtained the optimum probability distribution with which the messages should be delivered so that the average redundancy of the source is minimized. Here, we have taken the case o...In the present communication, we have obtained the optimum probability distribution with which the messages should be delivered so that the average redundancy of the source is minimized. Here, we have taken the case of various generalized mean codeword lengths. Moreover, the upper bound to these codeword lengths has been found for the case of Huffman encoding.展开更多
文摘Popular video coding standards like H.264 and MPEG working on the principle of motion-compensated pre-dictive coding demand much of the computational resources at the encoder increasing its complexity. Such bulky encoders are not suitable for applications like wireless low power surveillance, multimedia sensor networks, wireless PC cameras, mobile camera phones etc. New video coding scheme based on the principle of distributed source coding is looked upon in this paper. This scheme supports a low complexity encoder, at the same time trying to achieve the rate distortion performance of conventional video codecs. Current im-plementation uses LDPC codes for syndrome coding.
基金supported by the Polish Ministry of Science and Higher Education funding for statutory activities (decision no. 8686/E-367/S/2015 of 19 February 2015)
文摘The non-binary(NB) Irregular Repeat Accumulate(IRA) codes, as a subclass of NB LDPC codes, potentially have an excellent error-correcting performance. They are also known to provide linear complexity of encoding, but the basic encoding method with the serial rate-1 accumulator significantly limits the encoder throughput. Then the objective of the research presented in this paper is to develop an encoding method pro- viding significantly increased throughput of an NB-IRA encoder altogether with a flexible code construction methods for the structured(S-NB-IRA) codes eligible for the proposed encoding method. For this purpose, we reformulate the classic encoding algorithm to fit into the partial parallel encoder architecture. We propose the S-NB-IRA encoder block diagram and show that its estimated throughput is proportional to the submatrix size of the parity check matrix, which guarantees a wide complexity- throughput tradeoff. Then, in order to facilitate the S-NB-IRA coding systems design, we present a computer search algorithm for the construction of good S-NB-IRA codes. The algorithm aims at optimizing the code graph topology along with selecting an appropriate non-binary elements in the parity check matrix. Numerical results show that the constructed S-NB-IRA codes significantly outperform the binary IRA and S-IRA codes, while their performance is similar to the best unstructured NB-LDPC codes.
基金supported by NSF of China (No.61362010,61661005)NSF of Guangxi (No.2015GXNSFAA139290,2014GXNSFBA118276,2012GXNSFAA053217)
文摘An iterative detection/decoding algorithm of correlated sources for the LDPC-based relay systems is presented. The signal from the source-destination(S-D) link is formulated as a highly correlated counterpart from the relay-destination(R-D) link. A special XOR vector is defined using the correlated hard decision information blocks from two decoders and the extrinsic information exchanged between the two decoders is derived by the log-likelihood ratio(LLR) associated with the XOR vector. Such the decoding scheme is different from the traditional turbo-like detection/decoding algorithm, where the extrinsic information is computed by the side information and the soft decoder outputs. Simulations show that the presented algorithm has a slightly better performance than the traditional turbo-like algorithm(Taking the(255,175) EG-LDPC code as an example, it achieves about 0.1 dB performance gains aroundBLER=10^(-4)). Furthermore, the presented algorithm requires fewer computing operations per iteration and has faster convergence rate. For example, the average iteration of the presented algorithm is 33 at SNR=1.8 dB, which is about twice faster than that of the turbo-like algorithm, when decoding the(961,721) QC-LDPC code. Therefore, the presented decoding algorithm of correlated sources provides an alternative decoding solution for the LDPC-based relay systems.
基金supported by the National Natural Science Foundationof China (60702012)the Scientific Research Foundation for the Re-turned Overseas Chinese Scholars, State Education Ministry
文摘To compress hyperspectral images, a low complexity discrete cosine transform (DCT)-based distributed source coding (DSC) scheme with Gray code is proposed. Unlike most of the existing DSC schemes, which utilize transform in spatial domain, the proposed algorithm applies transform in spectral domain. Set-partitioning-based approach is applied to reorganize DCT coefficients into waveletlike tree structure and extract the sign, refinement, and significance bitplanes. The extracted refinement bits are Gray encoded. Because of the dependency along the line dimension of hyperspectral images, low density paritycheck-(LDPC)-based Slepian-Wolf coder is adopted to implement the DSC strategy. Experimental results on airborne visible/infrared imaging spectrometer (AVIRIS) dataset show that the proposed paradigm achieves up to 6 dB improvement over DSC-based coders which apply transform in spatial domain, with significantly reduced computational complexity and memory storage.
文摘If the degree distribution is chosen carefully, the irregular low-density parity-check (LDPC) codes can outperform the regular ones. An image transmission system is proposed by combining regular and irregular LDPC codes with 16QAM/64QAM modulation to improve both efficiency and reliability. Simulaton results show that LDPC codes are good coding schemes over fading channel in image communication with lower system complexity. More over, irregular codes can obtain a code gain of about 0.7 dB compared with regular ones when BER is 10 -4. So the irregular LDPC codes are more suitable for image transmission than the regular codes.
基金Supported by the National Natural Science Foundation of China (No. 60532060 60672117), the Program for Changjiang Scholars and Innovative Research Team in University (PCS1TR).
文摘Distributed source coding (DSC) is applied to interferential multispectral image compression owing to strong correlation among the image frames. Many DSC systems in the literature use feedback channel (FC) to control rate at the decoder, which limits the application of DSC. Upon an analysis of the image data, a rate control approach is proposed to avoid FC. Low-complexity motion compensation is applied first to estimate side information at the encoder. Using a polynomial fitting method, a new mathematical model is then derived to estimate rate based on the correlation between the source and side information. The experimental results show that our estimated rate is a good approximation to the actual rate required by FC while incurring a little bit-rate overhead. Our compression scheme performs comparable with the FC based DSC system and outperforms JPEG2000 significantly.
基金supported by National Natural Science Foundation of China(No.92067202,No.62001049,&No.62071058)Beijing Natural Science Foundation under Grant 4222012Beijing University of Posts and Telecommunications-China Mobile Research Institute Joint Innovation Center。
文摘In order to provide ultra low-latency and high energy-efficient communication for intelligences,the sixth generation(6G)wireless communication networks need to break out of the dilemma of the depleting gain of the separated optimization paradigm.In this context,this paper provides a comprehensive tutorial that overview how joint source-channel coding(JSCC)can be employed for improving overall system performance.For the purpose,we first introduce the communication requirements and performance metrics for 6G.Then,we provide an overview of the source-channel separation theorem and why it may not hold in practical applications.In addition,we focus on two new JSCC schemes called the double low-density parity-check(LDPC)codes and the double polar codes,respectively,giving their detailed coding and decoding processes and corresponding performance simulations.In a nutshell,this paper constitutes a tutorial on the JSCC scheme tailored to the needs of future 6G communications.
文摘In the present communication, we have obtained the optimum probability distribution with which the messages should be delivered so that the average redundancy of the source is minimized. Here, we have taken the case of various generalized mean codeword lengths. Moreover, the upper bound to these codeword lengths has been found for the case of Huffman encoding.