The distribution and ultrastructure of pigment cells in skins of normal and albino adult turbots were examined with transmission electron microscopy (TEM). Three types of pigment cells of melanophore, iridophore and...The distribution and ultrastructure of pigment cells in skins of normal and albino adult turbots were examined with transmission electron microscopy (TEM). Three types of pigment cells of melanophore, iridophore and xanthophore have been recognized in adult turbot skins. The skin color depends mainly on the amount and distribution of melanophore and iridophore, as xanthophore is quite rare. No pigment cells can be found in the epidermis of the skins. In the pigmented ocular skin of the turbot, melanophore and iridophore are usually co-localized in the dermis. This is quite different from the distribution in larvae skin. In albino and white blind skins of adult turbots, however, only iridophore monolayer still exists, while the melanophore monolayer disappears. This cytological evidence explains why the albino adult turbot, unlike its larvae, could never resume its body color no matter what enviroumental and nutritional conditions were provided. Endocytosis is quite active in the cellular membrane of the iridophore. This might be related to the formation of reflective platelet and stability of the iridophore.展开更多
Histological development of Japanese flounder Paralichthys olivaceus larval skin and ultrastructural difference of skin between reared normal and malpigmented Japanese flounder were studied with light microscopy (LM) ...Histological development of Japanese flounder Paralichthys olivaceus larval skin and ultrastructural difference of skin between reared normal and malpigmented Japanese flounder were studied with light microscopy (LM) and transmission electron microscopy (TEM). The results show that the skin develops slowly before the metamorphosis, while at the onset of metamorphosis, the skin develops quickly and becomes complete in structure till about 50 d after being hatched. Ultrastructural observation on the normal and malpigmented skins shows that the iridophore and melanophore are adjacent to each other. Profile and structure of the two kinds of pigment cells are more complete in the skin of normal ocular side than in the skin of pigmented blind side. The ultrastructure of typical chloride cell was observed in the skin of Japanese flounder larvae for the first time.展开更多
基金High-Tech Research and Development Program of China (No. AA2001628130)
文摘The distribution and ultrastructure of pigment cells in skins of normal and albino adult turbots were examined with transmission electron microscopy (TEM). Three types of pigment cells of melanophore, iridophore and xanthophore have been recognized in adult turbot skins. The skin color depends mainly on the amount and distribution of melanophore and iridophore, as xanthophore is quite rare. No pigment cells can be found in the epidermis of the skins. In the pigmented ocular skin of the turbot, melanophore and iridophore are usually co-localized in the dermis. This is quite different from the distribution in larvae skin. In albino and white blind skins of adult turbots, however, only iridophore monolayer still exists, while the melanophore monolayer disappears. This cytological evidence explains why the albino adult turbot, unlike its larvae, could never resume its body color no matter what enviroumental and nutritional conditions were provided. Endocytosis is quite active in the cellular membrane of the iridophore. This might be related to the formation of reflective platelet and stability of the iridophore.
基金funded by the NNSF of China(No.30070593)SNSF(No.Y2002D10).
文摘Histological development of Japanese flounder Paralichthys olivaceus larval skin and ultrastructural difference of skin between reared normal and malpigmented Japanese flounder were studied with light microscopy (LM) and transmission electron microscopy (TEM). The results show that the skin develops slowly before the metamorphosis, while at the onset of metamorphosis, the skin develops quickly and becomes complete in structure till about 50 d after being hatched. Ultrastructural observation on the normal and malpigmented skins shows that the iridophore and melanophore are adjacent to each other. Profile and structure of the two kinds of pigment cells are more complete in the skin of normal ocular side than in the skin of pigmented blind side. The ultrastructure of typical chloride cell was observed in the skin of Japanese flounder larvae for the first time.