Aniline is a vital industrial raw material.However,highly-toxic aniline wastewater usually deteriorated effluent quality,posed a threat to human health and ecosystem safety.Therefore,this study reported a novel intern...Aniline is a vital industrial raw material.However,highly-toxic aniline wastewater usually deteriorated effluent quality,posed a threat to human health and ecosystem safety.Therefore,this study reported a novel internal circulation iron-carbon micro-electrolysis(ICE)reactor to treat aniline wastewater.The effects of reaction time,pH,aeration rate and iron-carbon(Fe/C)ratio on the removal rate of aniline and the chemical oxygen demand were investigated using single-factor experiments.This process exhibited high aniline degradation performance of approximately 99.86% under optimal operating conditions(reaction time=20 min,pH=3,aeration rate=0.5 m3·h^(-1),and Fe/C=1:2).Based on the experimental results,the response surface method was applied to optimize the aniline removal rate.The Box–Behnken method was used to obtain the interaction effects of three main factors.The result showed that the reaction time had a dominant effect on the removal rate of aniline.The highest aniline removal rate was obtained at pH of 2,aeration rate of 0.5 m^(3)·h^(-1)and reaction time of 30 min.Under optional experimental conditions,the aniline content of effluent was reduced to 3 mg·L^(-1)and the removal rate was as high as 98.24%,within the 95% confidence interval(97.84%-99.32%)of the predicted values.The solution was treated and the reaction intermediates were identified by high-performance liquid chromatography,ultraviolet-visible spectroscopy,Fourier-transform infrared spectroscopy,gas chromatography-mass spectrometry,and ion chromatography.The main intermediates were phenol,benzoquinone,and carboxylic acid.These were used to propose the potential mechanism of aniline degradation in the ICE reactor.The results obtained in this study provide optimized conditions for the treatment of industrial wastewater containing aniline and can strengthen the understanding of the degradation mechanism of iron-carbon micro-electrolysis.展开更多
The nitrate nitrogen removal efficiency of iron-carbon micro-electrolysis system was discussed in treating pharmaceutical wastewater with high nitrogen and refractory organic concentration. The results show that the g...The nitrate nitrogen removal efficiency of iron-carbon micro-electrolysis system was discussed in treating pharmaceutical wastewater with high nitrogen and refractory organic concentration. The results show that the granularity of fillings,pH,volume ratios of iron-carbon and gas-water,and HRT. have significant effects on the nitrogen removal efficiency of iron-carbon micro-electrolysis system. The iron-carbon micro-electrolysis system has a good removal efficiency of pharmaceutical wastewater with high nitrogen and refractory organic concentration when the influent TN,NH4+-N,NO3--N and BOD5/CODCr are 823 mg/L,30 mg/L,793 mg/L and 0.1,respectively,at the granularity of iron and carbon 0.425 mm,pH 3,iron-carbon ratio 3,gas-water ratio 5,HRT 1.5 h,and the removal rates of TN,NH4+-N and NO3--N achieve 51.5%,70% and 50.94%,respectively.展开更多
This paper studies the composition, quantity and particle size distribution of nano-scaled precipitates with size less than 20 nm in high strength low carbon (HSLC) steel and their effects on mechanical properties of ...This paper studies the composition, quantity and particle size distribution of nano-scaled precipitates with size less than 20 nm in high strength low carbon (HSLC) steel and their effects on mechanical properties of HSLC steel by means of mass balance calculation of nano-scaled precipitates measured by chemical phase analysis plus SAXS method, high-resolution TEM analysis and thermodynamics calculation, as well as temper rapid cooling treatment of ZJ330. It is found that there existed a large quantity of nano-scaled iron-carbon precipitates with size less than 18 nm in low carbon steel produced by CSP and they are mainly Fe-O-C and Fe-Ti-O-C precipitates formed below temperature A1. These precipitates have ob- vious precipitation strengthening effect on HSLC steel and this may be regarded as one of the main reasons why HSLC steel has higher strength. There also existed a lot of iron-carbon precipitates with size less than 36 nm in HSLA steels.展开更多
碳捕集利用与封存(简称CCUS)技术是钢铁行业实现碳中和目标的可行选择,但是我国钢铁生产以高炉-转炉长流程生产为主,产生碳排放的工序众多且碳浓度较低,目前仍缺少经济高效的碳捕集方案。在此背景下,通过引入气化炉用于重整炉顶煤气,改...碳捕集利用与封存(简称CCUS)技术是钢铁行业实现碳中和目标的可行选择,但是我国钢铁生产以高炉-转炉长流程生产为主,产生碳排放的工序众多且碳浓度较低,目前仍缺少经济高效的碳捕集方案。在此背景下,通过引入气化炉用于重整炉顶煤气,改进现有炉顶煤气循环-氧气高炉工艺的炉顶煤气循环方式,耦合富氧燃烧碳捕集技术,提出一种基于重整煤气喷吹-氧气高炉的富氧燃烧碳捕集方案,并利用Aspen Plus建模计算和碳流分析评估了该方案的节能减排潜力。结果表明:富氧燃烧碳捕集技术与氧气高炉低碳冶炼工艺有着良好的承接性与耦合性,两者耦合能够降低钢铁行业碳捕集的难度;富氧燃烧单位CO_(2)的捕集能耗为2623.91 kJ/kg,比现有的醇胺法的碳捕集能耗低51.4%,比变压吸附法的碳捕集能耗低26.2%;生产每吨钢材可通过富氧燃烧捕集到1.5 t CO_(2),有望实现钢铁生产过程的CO_(2)净零排放。总的来说,该方案能够在高炉低碳冶炼的基础上进行低成本、大规模的碳捕集,是钢铁行业绿色低碳转型的可行方案。展开更多
基金supported by the National Natural Science Foundation of China(21677018)the Joint Fund of the Beijing Municipal Natural Science Foundation and Beijing Municipal Education Commission(KZ201810017024)the Cross-Disciplinary Science Foundation from Beijing Institute of Petrochemical Technology(BIPTCSF–22032205003/014)。
文摘Aniline is a vital industrial raw material.However,highly-toxic aniline wastewater usually deteriorated effluent quality,posed a threat to human health and ecosystem safety.Therefore,this study reported a novel internal circulation iron-carbon micro-electrolysis(ICE)reactor to treat aniline wastewater.The effects of reaction time,pH,aeration rate and iron-carbon(Fe/C)ratio on the removal rate of aniline and the chemical oxygen demand were investigated using single-factor experiments.This process exhibited high aniline degradation performance of approximately 99.86% under optimal operating conditions(reaction time=20 min,pH=3,aeration rate=0.5 m3·h^(-1),and Fe/C=1:2).Based on the experimental results,the response surface method was applied to optimize the aniline removal rate.The Box–Behnken method was used to obtain the interaction effects of three main factors.The result showed that the reaction time had a dominant effect on the removal rate of aniline.The highest aniline removal rate was obtained at pH of 2,aeration rate of 0.5 m^(3)·h^(-1)and reaction time of 30 min.Under optional experimental conditions,the aniline content of effluent was reduced to 3 mg·L^(-1)and the removal rate was as high as 98.24%,within the 95% confidence interval(97.84%-99.32%)of the predicted values.The solution was treated and the reaction intermediates were identified by high-performance liquid chromatography,ultraviolet-visible spectroscopy,Fourier-transform infrared spectroscopy,gas chromatography-mass spectrometry,and ion chromatography.The main intermediates were phenol,benzoquinone,and carboxylic acid.These were used to propose the potential mechanism of aniline degradation in the ICE reactor.The results obtained in this study provide optimized conditions for the treatment of industrial wastewater containing aniline and can strengthen the understanding of the degradation mechanism of iron-carbon micro-electrolysis.
基金Project(2009ZX07315-005) supported by the National Water Pollution Controlled and Treatment Great Special of China
文摘The nitrate nitrogen removal efficiency of iron-carbon micro-electrolysis system was discussed in treating pharmaceutical wastewater with high nitrogen and refractory organic concentration. The results show that the granularity of fillings,pH,volume ratios of iron-carbon and gas-water,and HRT. have significant effects on the nitrogen removal efficiency of iron-carbon micro-electrolysis system. The iron-carbon micro-electrolysis system has a good removal efficiency of pharmaceutical wastewater with high nitrogen and refractory organic concentration when the influent TN,NH4+-N,NO3--N and BOD5/CODCr are 823 mg/L,30 mg/L,793 mg/L and 0.1,respectively,at the granularity of iron and carbon 0.425 mm,pH 3,iron-carbon ratio 3,gas-water ratio 5,HRT 1.5 h,and the removal rates of TN,NH4+-N and NO3--N achieve 51.5%,70% and 50.94%,respectively.
基金Supported by the National Natural Science Foundation of China (Grant No. 50334010)the State Foundation for Key Projects: New Generation of Steels (Grant No. G1998061500)
文摘This paper studies the composition, quantity and particle size distribution of nano-scaled precipitates with size less than 20 nm in high strength low carbon (HSLC) steel and their effects on mechanical properties of HSLC steel by means of mass balance calculation of nano-scaled precipitates measured by chemical phase analysis plus SAXS method, high-resolution TEM analysis and thermodynamics calculation, as well as temper rapid cooling treatment of ZJ330. It is found that there existed a large quantity of nano-scaled iron-carbon precipitates with size less than 18 nm in low carbon steel produced by CSP and they are mainly Fe-O-C and Fe-Ti-O-C precipitates formed below temperature A1. These precipitates have ob- vious precipitation strengthening effect on HSLC steel and this may be regarded as one of the main reasons why HSLC steel has higher strength. There also existed a lot of iron-carbon precipitates with size less than 36 nm in HSLA steels.
文摘碳捕集利用与封存(简称CCUS)技术是钢铁行业实现碳中和目标的可行选择,但是我国钢铁生产以高炉-转炉长流程生产为主,产生碳排放的工序众多且碳浓度较低,目前仍缺少经济高效的碳捕集方案。在此背景下,通过引入气化炉用于重整炉顶煤气,改进现有炉顶煤气循环-氧气高炉工艺的炉顶煤气循环方式,耦合富氧燃烧碳捕集技术,提出一种基于重整煤气喷吹-氧气高炉的富氧燃烧碳捕集方案,并利用Aspen Plus建模计算和碳流分析评估了该方案的节能减排潜力。结果表明:富氧燃烧碳捕集技术与氧气高炉低碳冶炼工艺有着良好的承接性与耦合性,两者耦合能够降低钢铁行业碳捕集的难度;富氧燃烧单位CO_(2)的捕集能耗为2623.91 kJ/kg,比现有的醇胺法的碳捕集能耗低51.4%,比变压吸附法的碳捕集能耗低26.2%;生产每吨钢材可通过富氧燃烧捕集到1.5 t CO_(2),有望实现钢铁生产过程的CO_(2)净零排放。总的来说,该方案能够在高炉低碳冶炼的基础上进行低成本、大规模的碳捕集,是钢铁行业绿色低碳转型的可行方案。