Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2...Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2DM established through a high-fat diet and streptozotocin.TGP(5.1×10^(3) Da)was composed of mannose,glucosamine,rhamnose,glucuronic acid,galactosamine,glucose,galactose,xylose,and fucose.It could significantly alleviate weight loss,reduce fasting blood glucose levels,reverse dyslipidemia,reduce liver damage from oxidative stress,and improve insulin sensitivity.RT-PCR and Western blotting indicated that TGP could activate the phosphatidylinositol-3-kinase/protein kinase B signaling pathway to regulate disorders in glucolipid metabolism and improve insulin resistance.TGP increased the abundance of Allobaculum,Akkermansia,and Bifidobacterium,restored the microbiota abundance in the intestinal tracts of mice with T2DM,and promoted short-chain fatty acid production.This study provides new insights into the antidiabetic effects of TGP and highlights its potential as a natural hypoglycemic nutraceutical.展开更多
Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage.The E26 transformation-specific sequence-related t...Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage.The E26 transformation-specific sequence-related transcription factor Spi1 regulates microglial/macrophage commitment and maturation.However,the effect of Spi1 on intracerebral hemorrhage remains unclear.In this study,we found that Spi1 may regulate recovery from the neuroinflammation and neurofunctional damage caused by intracerebral hemorrhage by modulating the microglial/macrophage transcriptome.We showed that high Spi1expression in microglia/macrophages after intracerebral hemorrhage is associated with the activation of many pathways that promote phagocytosis,glycolysis,and autophagy,as well as debris clearance and sustained remyelination.Notably,microglia with higher levels of Soil expression were chara cterized by activation of pathways associated with a variety of hemorrhage-related cellular processes,such as complement activation,angiogenesis,and coagulation.In conclusion,our results suggest that Spi1 plays a vital role in the microglial/macrophage inflammatory response following intracerebral hemorrhage.This new insight into the regulation of Spi1 and its target genes may advance our understanding of neuroinflammation in intracerebral hemorrhage and provide therapeutic targets for patients with intracerebral hemorrhage.展开更多
Background:The purpose of the study was to investigatethe active ingredients and potential biochemicalmechanisms of Simiao Wan(SMW)in obesity-associated insulin resistance.Methods:An integrated network pharmacology me...Background:The purpose of the study was to investigatethe active ingredients and potential biochemicalmechanisms of Simiao Wan(SMW)in obesity-associated insulin resistance.Methods:An integrated network pharmacology method to screen the active compoundsand candidate targets,construct the protein-protein-interaction network,and ingredients-targets-pathways network was constructed for topological analysis to identify core targets and main ingredients.To find the possible signaling pathways,enrichment analysis was performed.Further,a model of insulin resistance in HL-7702 cells was established to verify the impact of SMW and the regulatory processes.Results:An overall of 63 active components and 151 candidate targets were obtained,in which flavonoids were the main ingredients.Enrichment analysis indicated that the PI3K-Akt signaling pathway was the potential pathway regulated by SMW in obesity-associated insulin resistance treatment.The result showed that SMW could significantly ameliorate insulin sensitivity,increase glucose synthesis and glucose utilization and reduce intracellular lipids accumulation in hepatocytes.Also,SMW inhibited diacylglycerols accumulation-induced PKCεactivity and decreased its translocation to the membrane.Conclusion:SMW ameliorated obesity-associated insulin resistance through PKCε/IRS-1/PI3K/Akt signaling axis in hepatocytes,providing a new strategy for metabolic disease treatment.展开更多
Autism spectrum disorders are a group of neurodevelopmental disorders involving more than 1100 genes,including Ctnnd2 as a candidate gene.Ctnnd2knockout mice,serving as an animal model of autis m,have been demonstrate...Autism spectrum disorders are a group of neurodevelopmental disorders involving more than 1100 genes,including Ctnnd2 as a candidate gene.Ctnnd2knockout mice,serving as an animal model of autis m,have been demonstrated to exhibit decreased density of dendritic spines.The role of melatonin,as a neuro hormone capable of effectively alleviating social interaction deficits and regulating the development of dendritic spines,in Ctnnd2 deletion-induced nerve injury remains unclea r.In the present study,we discove red that the deletion of exon 2 of the Ctnnd2 gene was linked to social interaction deficits,spine loss,impaired inhibitory neurons,and suppressed phosphatidylinositol-3-kinase(PI3K)/protein kinase B(Akt) signal pathway in the prefrontal cortex.Our findings demonstrated that the long-term oral administration of melatonin for 28 days effectively alleviated the aforementioned abnormalities in Ctnnd2 gene-knockout mice.Furthermore,the administration of melatonin in the prefro ntal cortex was found to improve synaptic function and activate the PI3K/Akt signal pathway in this region.The pharmacological blockade of the PI3K/Akt signal pathway with a PI3K/Akt inhibitor,wo rtmannin,and melatonin receptor antagonists,luzindole and 4-phenyl-2-propionamidotetralin,prevented the melatonin-induced enhancement of GABAergic synaptic function.These findings suggest that melatonin treatment can ameliorate GABAe rgic synaptic function by activating the PI3K/Akt signal pathway,which may contribute to the improvement of dendritic spine abnormalities in autism spectrum disorders.展开更多
AIM: To assess the impact of eukaryotic elongation factor 1 alpha 2 (eEF1A2) on hepatocellular carcinoma (HCC) cell proliferation, apoptosis, migration and invasion, and determine the underlying mechanisms.METHODS: eE...AIM: To assess the impact of eukaryotic elongation factor 1 alpha 2 (eEF1A2) on hepatocellular carcinoma (HCC) cell proliferation, apoptosis, migration and invasion, and determine the underlying mechanisms.METHODS: eEF1A2 levels were detected in 62 HCC tissue samples and paired pericarcinomatous specimens, and the human HCC cell lines SK-HEP-1, HepG2 and BEF-7402, by real-time PCR and immunohistochemistry. Experimental groups included eEF1A2 silencing in BEL-7402 cells with lentivirus eEF1A2-shRNA (KD group) and eEF1A2 overexpression in SK-HEP-1 cells with eEF1A2 plasmid (OE group). Non-transfected cells (control group) and lentivirus-based empty vector transfected cells (NC group) were considered control groups. Cell proliferation (MTT and colony formation assays), apoptosis (Annexin V-APC assay), cell cycle (DNA ploidy assay), and migration and invasion (Transwell assays) were assessed. Protein levels of PI3K/Akt/NF-κB signaling effectors were evaluated by Western blot.RESULTS: eEF1A2 mRNA and protein levels were significantly higher in HCC cancer tissue samples than in paired pericarcinomatous and normal specimens. SK-HEP-1 cells showed lower eEF1A2 mRNA levels; HepG2 and BEL-7402 cells showed higher eEF1A2 mRNA levels, with BEL-7402 cells displaying the highest amount. Efficient eEF1A2 silencing resulted in reduced cell proliferation, migration and invasion, increased apoptosis, and induced cell cycle arrest. The PI3K/Akt/NF-κB signaling pathway was notably inhibited. Inversely, eEF1A2 overexpression resulted in promoted cell proliferation, migration and invasion.CONCLUSION: eEF1A2, highly expressed in HCC, is a potential oncogene. Its silencing significantly decreases HCC tumorigenesis, likely by inhibiting PI3K/Akt/NF-κB signaling.展开更多
BACKGROUND Histone Lysine Specific Demethylase 1(LSD1)is the first histone demethylase to be discovered,which regulates various biological functions by making lysine of histone H3K4,H3K9 and non-histone substrates dem...BACKGROUND Histone Lysine Specific Demethylase 1(LSD1)is the first histone demethylase to be discovered,which regulates various biological functions by making lysine of histone H3K4,H3K9 and non-histone substrates demethylated.Abnormal regulation of LSD1 is closely related to the occurrence and development of gastric cancer.The change of LSD1 expression level plays an important role in the proliferation and metastasis of gastric cancer cells.The study of its function and mechanism may provide a theoretical basis for early diagnosis and targeted therapy of gastric cancer.AIM To investigate the effect of downregulation of lysine-specific demethylase 1(LSD1)expression on proliferation and invasion of gastric cancer cells and the possible regulatory mechanisms of the VEGF-C/PI3K/AKT signaling pathway.METHODS The LSD1-specific short hairpin RNA(shRNA)interference plasmid was transiently transfected,and expression of LSD1 was downregulated.The cell proliferation ability of LSD1 was observed by CCK-8 assay after downregulating expression of LSD1.Transwell invasion assay was used to observe the change of cell invasion ability after downregulating expression of LSD1.Expression of phosphorylated phosphoinositide 3-kinase(p-PI3K),PI3K,p-AKT,AKT,vascular endothelial growth factor receptor(VEGFR)-3,matrix metalloproteinase(MMP)-2 and MMP-9 in each group was detected by Western blotting.RESULTS The cell proliferation ability of transiently transfected LSD1-shRNA interference plasmid group was significantly lower than that of the control group(P<0.05).Transwell invasion assay showed that the number of cells across the membrane of the LSD1-shRNA transfection group(238.451±5.216)was significantly lower than that of the control group(49.268±6.984)(P<0.01).Western blotting showed that expression level of VEGF-C,p-PI3K,PI3K,p-AKT,AKT,VEGFR-3,MMP-2 and MMP-9 in the LSD1-shRNA group was significantly lower than that in the control group(P<0.05).CONCLUSION Downregulation of LSD1 expression inhibits metastatic potential of gastric cancer cells,and VEGF-C-mediated activation of PI3K/AKT signaling pathway,which may be an important mechanism for inhibiting lymph node metastasis in gastric cancer cells.展开更多
BACKGROUND Pancreatic cancer is a highly malignant tumor of the gastrointestinal system whose emerging resistance to chemotherapy has necessitated the development of novel antitumor treatments.Scoparone,a traditional ...BACKGROUND Pancreatic cancer is a highly malignant tumor of the gastrointestinal system whose emerging resistance to chemotherapy has necessitated the development of novel antitumor treatments.Scoparone,a traditional Chinese medicine monomer with a wide range of pharmacological properties,has attracted considerable attention for its antitumor activity.AIM To explore the potential antitumor effect of scoparone on pancreatic cancer and the possible molecular mechanism of action.METHODS The target genes of scoparone were determined using both the bioinformatics and multiplatform analyses.The effect of scoparone on pancreatic cancer cell proliferation,migration,invasion,cell cycle,and apoptosis was detected in vitro.The expression of hub genes was tested using quantitative reverse transcription polymerase chain reaction(qRT-PCR),and the molecular mechanism was analyzed using Western blot.The in vivo effect of scoparone on pancreatic cancer cell proliferation was detected using a xenograft tumor model in nude mice as well as immunohistochemistry.RESULTS The hub genes involved in the suppression of pancreatic cancer by scoparone were obtained by network bioinformatics analyses using publicly available databases and platforms,including SwissTargetPrediction,STITCH,GeneCards,CTD,STRING,WebGestalt,Cytoscape,and Gepia;AKT1 was confirmed using qRT-PCR to be the hub gene.Cell Counting Kit-8 assay revealed that the viability of Capan-2 and SW1990 cells was significantly reduced by scoparone treatment exhibiting IC50 values of 225.2μmol/L and 209.1μmol/L,respectively.Wound healing and transwell assays showed that scoparone inhibited the migration and invasion of pancreatic cancer cells.Additionally,flow cytometry confirmed that scoparone caused cell cycle arrest and induced apoptosis.Scoparone also increased the expression levels of Bax and cleaved caspase-3,decreased the levels of MMP9 and Bcl-2,and suppressed the phosphorylation of Akt without affecting total PI3K and Akt.Moreover,compared with the control group,xenograft tumors,in the 200μmol/L scoparone treatment group,were smaller in volume and lighter in weight,and the percentages of Ki65-and PCNA-positive cells were decreased.CONCLUSION Our findings indicate that scoparone inhibits pancreatic cancer cell proliferation in vitro and in vivo,inhibits migration and invasion,and induces cycle arrest and apoptosis in vitro through the PI3K/Akt signaling pathway.展开更多
[Objectives]To explore the protective effects of Zuogui Pill on ^(60)Co-γ-ray-induced premature aging of rats based on phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)signal...[Objectives]To explore the protective effects of Zuogui Pill on ^(60)Co-γ-ray-induced premature aging of rats based on phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)signaling pathway.[Methods]Sixty sexually mature female SD rats were irradiated with ^(60)Co-γ-ray(6.0 Gy,LD 40)for 24 h at one time.These rats were randomly divided into model group,Progynova group[0.18(g·kg)/d],Progynova[0.09(g·kg)/d]+Zuogui Pill high dose[23.625(g·kg)/d)]group,Zuogui Pill high dose[23.625(g·kg)/d)]group,Zuogui Pill medium dose[9.45(g·kg)/d)]group and Zuogui Pill low dose[4.725(g·kg)/d]group.The administration(once a day)lasted 21 d.The rat serum[follicle-stimulating hormone(FSH),luteinizing hormone(LH)and estradiol(E_(2))]were detected by Enzyme-linked immunosorbent assay(ELISA).The morphological changes of ovary were observed by hematoxylin-eosin(HE)staining.The apoptosis rate of granulosa cells was detected by terminal deoxynucleotidyl transferase(TdT)-mediated dUTP nick-end labeling(TUNEL).The protein expression of phosphorylated(p)-PI3K,p-Akt,p-mTOR,B-cell lymphoma-2(Bcl-2),and Bcl-2-associated X protein(Bax)in ovarian tissues were detected by Western blot.[Results]Compared with the normal group,the model group showed significant increase in the serum FSH(P<0.01),significant decrease in serum E_(2)(P<0.05),and decrease in the number of early follicles and luteum in the ovary(P<0.01).Besides,the apoptosis rate of granulosa cells increased significantly(P<0.01);the expression of p-PI3K,p-Akt,p-mTOR and Bcl-2 in ovarian tissue decreased significantly,while the expression of Bax increased significantly(P<0.01).Compared with the model group,the number of early follicles in the ovary increased and the apoptosis rate of granulosa cells decreased after intervention in each administration group.In addition,the protein expressions of p-PI3K,p-Akt,p-mTOR and Bcl-2 increased,while the expression of Bax decreased,especially in Progynova+Zuogui Pill high dose group,the differences were statistically significant(P<0.05,P<0.01).[Conclusions]Zuogui Pill may protect the radiation-injured ovary through activating the expression of PI3K/Akt/mTOR protein in ovarian tissue,increasing the amount of Bcl-2 protein and inhibiting the expression of Bax protein.展开更多
Baicalin is a flavonoid compound extracted from Scutellaria baicalensis root.Recent evidence indicates that baicalin is neuroprotective in models of ischemic stroke.Here,we investigate the neuroprotective effect of ba...Baicalin is a flavonoid compound extracted from Scutellaria baicalensis root.Recent evidence indicates that baicalin is neuroprotective in models of ischemic stroke.Here,we investigate the neuroprotective effect of baicalin in a neonatal rat model of hypoxic-ischemic encephalopathy.Seven-day-old pups underwent left common carotid artery ligation followed by hypoxia(8% oxygen at 37°C) for 2 hours,before being injected with baicalin(120 mg/kg intraperitoneally) and examined 24 hours later.Baicalin effectively reduced cerebral infarct volume and neuronal loss,inhibited apoptosis,and upregulated the expression of p-Akt and glutamate transporter 1.Intracerebroventricular injection of the phosphoinositide 3-kinase/protein kinase B(PI3 K/Akt) inhibitor LY294002 30 minutes before injury blocked the effect of baicalin on p-Akt and glutamate transporter 1,and weakened the associated neuroprotective effect.Our findings provide the first evidence,to our knowledge that baicalin can protect neonatal rat brains against hypoxic-ischemic injury by upregulating glutamate transporter 1 via the PI3 K/Akt signaling pathway.展开更多
Rosmarinic acid(RA) can elicit a neuroprotective effect against ischemic stroke, but the precise molecular mechanism remains poorly understood. In this study, an experimental ischemic stroke model was established in...Rosmarinic acid(RA) can elicit a neuroprotective effect against ischemic stroke, but the precise molecular mechanism remains poorly understood. In this study, an experimental ischemic stroke model was established in CD-1 mice(Beijing Vital River Laboratory Animal Technology, Beijing, China) by occluding the right middle cerebral artery for 1 hour and allowing reperfusion for 24 hours. After intraperitoneally injecting model mice with 10, 20, or 40 mg/kg RA, functional neurological deficits were evaluated using modified Longa scores. Subsequently, cerebral infarct volume was measured using TTC staining and ischemic brain tissue was examined for cell apoptosis with TUNEL staining. Superoxide dismutase activity and malondialdehyde levels were measured by spectrophometry. Expression of heme oxygenase-1(HO-1), nuclear factor erythroid 2-related factor 2(Nrf2), Bcl-2, Bax, Akt, and phospho-Ser473 Akt proteins in ischemic brain tissue was detected by western blot, while mRNA levels of Nrf2, HO-1, Bcl-2, and Bax were analyzed using real time quantitative PCR. In addition, HO-1 enzyme activity was measured spectrophotometrically. RA(20 and 40 mg/kg) greatly improved neurological function, reduced infarct volume, decreased cell apoptosis, upregulated Bcl-2 protein and mRNA expression, downregulated Bax protein and mRNA expression, increased HO-1 and Nrf2 protein and mRNA expression, increased superoxide dismutase activity, and decreased malondialdehyde levels in ischemic brain tissue of model mice. However, intraperitoneal injection of a HO-1 inhibitor(10 mg/kg zinc protoporphyrin IX) reversed the neuroprotective effects of RA on HO-1 enzyme activity and Bcl-2 and Bax protein expression. The PI3 K/Akt signaling pathway inhibitor LY294002(10 mM) inhibited Akt phosphorylation, as well as Nrf2 and HO-1 expression. Our findings suggest that RA has anti-oxidative and anti-apoptotic properties that protect against ischemic stroke by a mechanism involving upregulation of Nrf2 and HO-1 expression via the PI3 K/Akt signaling pathway.展开更多
The purpose of this study was to explore the mechanism of Solanine disrupting energy metabolism in human renal cancer ACHN cells and to clarify its target. The specific method was to culture human renal cancer ACHN ce...The purpose of this study was to explore the mechanism of Solanine disrupting energy metabolism in human renal cancer ACHN cells and to clarify its target. The specific method was to culture human renal cancer ACHN cell lines, and to intervene with Solanine of high, medium and low concentrations. The content of ATP in cells was measured by ELISA method. The expression of HIF-1α protein and the expression of PI3K, AKT, p-PI3K, p-AKT in PI3K/AKT pathway were detected by Western blotting. The results showed that compared with the control group, the relative expression of p-PI3K and p-AKT showed a downward trend with the increase of Solanine concentration (P < 0.05), while the relative expression of PI3K and AKT showed no significant change (P > 0.05). In addition, the relative expression of HIF-1α also showed a downward trend (P < 0.05). According to the above results, it is suggested that Solanine can significantly inhibit the energy metabolism of renal cancer cells, the main mechanism of which is the down-regulation of HI-1αf downstream of the PI3K/Akt pathway by inhibiting the phosphorylation process of PI3K/p-PI3K and Akt/p-Akt.展开更多
Most fungi display a mixed mating system with both asexual and sexual reproduction.The timing of the two modes of reproduction must be carefully coordinated through signal perception and coordination in the cell along...Most fungi display a mixed mating system with both asexual and sexual reproduction.The timing of the two modes of reproduction must be carefully coordinated through signal perception and coordination in the cell along with chromatin modification.Here,we investigated coordination of reproductive output by investigating the function of the histone chaper-one anti-silencing factor 1(ASF1)in a fungal species amenable to characterization of both asexual and sexual reproduction.We used knockout approach to show that SeASF1 influenced asexual and sexual reproduction in Stemphylium eturmiunum.SeASF1-deleted strains failed to produce pseudothecia,but produce abnormal conidia and showed an irregular distribution of nuclei in mycelium.Transcriptome sequencing was then used to identify genes with altered expression in the SeASF1-deleted strains.The transcriptional expression of the identified SeDJ-1 was strongly regulated by SeASF1.The interaction of SeDJ-1 and SeASF1 was confirmed using Y2H,Co-IP,and pull-down.Due to some components of phosphatidylinositol 3-kinase/protein kinase B(PI3K/AKT)signaling pathway were known to interact with DJ-1 in mammals,we verified SePI3K,an element of PI3K/AKT signaling pathway in S.eturmiunum,was directly linked to SeDJ-1 and then these two proteins were defined as a coordinator of reproduction.However,knockout of SeDJ-1 or SePI3K altered the asexual and sexual repro-duction,but SePI3K recovered the asexual and sexual development of∆Sedj-1.The SeDJ-1-M6 segment of SeDJ-1 was essential for its interaction with SePI3K and played a critical role in restoring sexual reproduction in the∆Sepi3k,providing a deep understanding of the regulatory mechanism of SeDJ-1 in S.eturmiunum development.Summarily,SeASF1 is able to trigger SeDJ-1 and SeDJ-1can also activate SePI3K,which is orchestrally involved in asexual and sexual reproduction in S.eturmiunum.All these results reveal that SeASF1 manipulates asexual and sexual reproduction in S.eturmiunum by SeDJ-1 perception of PI3K/AKT signaling pathway.These data highlight the deep similarities in coordinating asexual and sexual processes in both fungi and eukaryotes in general.展开更多
The aim of the present study was to investigate the protective effects and underlying mechanisms of Garcinia xanthochymus, a perennial medicinal plant native to Yunnan, China, against H2 O2-induced oxidative damage in...The aim of the present study was to investigate the protective effects and underlying mechanisms of Garcinia xanthochymus, a perennial medicinal plant native to Yunnan, China, against H2 O2-induced oxidative damage in rat pheochromacytoma PC12 cells. Preincubation of PC12 cells with fruit Et OAc fraction(fruit-EFr., 12.5–50 μmol·L^(-1)) of G. xanthochymus for 24 h prior to H_2O_2 exposure markedly improved cell viability and increased the activities of antioxidant enzymes(superoxide dismutase, catalase, and heme oxygenase-1 [HO-1]), prevented lactate dehydrogenase release and lipid peroxidation malondialdehyde production, attenuated the decrease of matrix metalloproteinases(MMP), and scavenged reactive oxygen species(ROS). Fruit-EFr. also reduced BAX and cytochrome C expression and improved BCL-2 expression, thereby decreasing the ratio of BAX to BCL-2. Fruit-EFr. activated the nuclear translocation of NRF2 to increase HO-1 and induced the phosphorylation of AKT. Its cytoprotective effect was abolished by LY294002, a specific inhibitor of PI3 K. Taken together, the above findings suggested that fruit-EFr.of G. xanthochymus could enhance cellular antioxidant defense capacity, at least in part, through upregulating HO-1 expression and activating the PI3 K/AKT pathway and that it could suppress H_2O_2-induced oxidative damage via PI3 K/AKT and NRF2/HO-1 signaling pathways.展开更多
Background:Keloid is a fibrotic dermal disease characterized by an abnormal increase in fibroblast proliferation and invasion.These pathological behaviours may be related to the heterogeneity of keloid fibroblasts(KFs...Background:Keloid is a fibrotic dermal disease characterized by an abnormal increase in fibroblast proliferation and invasion.These pathological behaviours may be related to the heterogeneity of keloid fibroblasts(KFs);however,because of a lack of effective biomarkers for KFs it is difficult to study the underlying mechanism.Our previous studies revealed that the expansion of CD26+KFs was responsible for increased keloid proliferation and invasion capabilities;the intrinsic relationship and mechanism between CD26 and keloid is therefore worthy of further investigation.The aim of this studywas to explore molecular mechanisms in the process of CD26 upregulated KFs proliferation and invasion abilities,and provide more evidence for CD26 as an effective biomarker of keloid and a new clinical therapeutic target.Methods:Flow cytometry was performed to isolate CD26+/CD26−fibroblasts from KFs and normal fibroblasts.To generate stably silenced KFs for CD26 and insulin-like growth factor-1 receptor(IGF-1R),lentiviral particles encoding shRNA targeting CD26 and IGF-1R were used for transfection.Cell proliferations were analysed by cell counting kit-8 assay and 5-ethynyl-2-deoxyuridine(EdU)incorporation assay.Scratching assay and transwell assay were used to assess cell migration and invasion abilities.To further quantify the regulatory role of CD26 expression in the relevant signalling pathway,RT-qPCR,western blot,ELISA,PI3K activity assay and immunofluorescence were used.Results:Aberrant expression of CD26 in KFs was proven to be associated with increased proliferation and invasion of KFs.Furthermore,the role of the IGF-1/IGF-1 receptor axis was also studied in CD26 and was found to upregulate KF proliferation and invasion.The PI3K/protein kinase B(AKT)/mammalian target of rapamycin(mTOR)pathway was shown to affect CD26-regulated KF proliferation and invasion by increasing phosphorylation levels of S6 kinase and 4E-binding protein.Conclusions:CD26 can be the effective biomarker for KFs,and its expression is closely related to proliferation and invasion in keloids through the IGF-1-induced PI3K/AKT/mTOR pathway.This work provides a novel perspective on the pathological mechanisms affecting KFs and therapeutic strategies against keloids.展开更多
基金funded by the National Key Research and Development Program of China(2020YFD0900902)Zhejiang Province Public Welfare Technology Application Research Project(LGJ21C20001)Zhejiang Provincial Key Research and Development Project of China(2019C02076 and 2019C02075)。
文摘Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2DM established through a high-fat diet and streptozotocin.TGP(5.1×10^(3) Da)was composed of mannose,glucosamine,rhamnose,glucuronic acid,galactosamine,glucose,galactose,xylose,and fucose.It could significantly alleviate weight loss,reduce fasting blood glucose levels,reverse dyslipidemia,reduce liver damage from oxidative stress,and improve insulin sensitivity.RT-PCR and Western blotting indicated that TGP could activate the phosphatidylinositol-3-kinase/protein kinase B signaling pathway to regulate disorders in glucolipid metabolism and improve insulin resistance.TGP increased the abundance of Allobaculum,Akkermansia,and Bifidobacterium,restored the microbiota abundance in the intestinal tracts of mice with T2DM,and promoted short-chain fatty acid production.This study provides new insights into the antidiabetic effects of TGP and highlights its potential as a natural hypoglycemic nutraceutical.
基金supported by the National Natural Science Foundation of China,No.81971097(to JY)。
文摘Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage.The E26 transformation-specific sequence-related transcription factor Spi1 regulates microglial/macrophage commitment and maturation.However,the effect of Spi1 on intracerebral hemorrhage remains unclear.In this study,we found that Spi1 may regulate recovery from the neuroinflammation and neurofunctional damage caused by intracerebral hemorrhage by modulating the microglial/macrophage transcriptome.We showed that high Spi1expression in microglia/macrophages after intracerebral hemorrhage is associated with the activation of many pathways that promote phagocytosis,glycolysis,and autophagy,as well as debris clearance and sustained remyelination.Notably,microglia with higher levels of Soil expression were chara cterized by activation of pathways associated with a variety of hemorrhage-related cellular processes,such as complement activation,angiogenesis,and coagulation.In conclusion,our results suggest that Spi1 plays a vital role in the microglial/macrophage inflammatory response following intracerebral hemorrhage.This new insight into the regulation of Spi1 and its target genes may advance our understanding of neuroinflammation in intracerebral hemorrhage and provide therapeutic targets for patients with intracerebral hemorrhage.
基金supported by the National Natural Science Foundation of China(81903871)Natural Science Foundation of Jiangsu Province(BK20190565)+1 种基金Fundamental Research Funds for the Central Universities(2632021ZD16)Zhenjiang City 2022 Science and Technology Innovation Fund(SH2022084).
文摘Background:The purpose of the study was to investigatethe active ingredients and potential biochemicalmechanisms of Simiao Wan(SMW)in obesity-associated insulin resistance.Methods:An integrated network pharmacology method to screen the active compoundsand candidate targets,construct the protein-protein-interaction network,and ingredients-targets-pathways network was constructed for topological analysis to identify core targets and main ingredients.To find the possible signaling pathways,enrichment analysis was performed.Further,a model of insulin resistance in HL-7702 cells was established to verify the impact of SMW and the regulatory processes.Results:An overall of 63 active components and 151 candidate targets were obtained,in which flavonoids were the main ingredients.Enrichment analysis indicated that the PI3K-Akt signaling pathway was the potential pathway regulated by SMW in obesity-associated insulin resistance treatment.The result showed that SMW could significantly ameliorate insulin sensitivity,increase glucose synthesis and glucose utilization and reduce intracellular lipids accumulation in hepatocytes.Also,SMW inhibited diacylglycerols accumulation-induced PKCεactivity and decreased its translocation to the membrane.Conclusion:SMW ameliorated obesity-associated insulin resistance through PKCε/IRS-1/PI3K/Akt signaling axis in hepatocytes,providing a new strategy for metabolic disease treatment.
基金supported by the Chongqing Science and Technology CommitteeNatural Science Foundation of Chongqing,No.cstc2021jcyj-msxmX0065 (to YL)。
文摘Autism spectrum disorders are a group of neurodevelopmental disorders involving more than 1100 genes,including Ctnnd2 as a candidate gene.Ctnnd2knockout mice,serving as an animal model of autis m,have been demonstrated to exhibit decreased density of dendritic spines.The role of melatonin,as a neuro hormone capable of effectively alleviating social interaction deficits and regulating the development of dendritic spines,in Ctnnd2 deletion-induced nerve injury remains unclea r.In the present study,we discove red that the deletion of exon 2 of the Ctnnd2 gene was linked to social interaction deficits,spine loss,impaired inhibitory neurons,and suppressed phosphatidylinositol-3-kinase(PI3K)/protein kinase B(Akt) signal pathway in the prefrontal cortex.Our findings demonstrated that the long-term oral administration of melatonin for 28 days effectively alleviated the aforementioned abnormalities in Ctnnd2 gene-knockout mice.Furthermore,the administration of melatonin in the prefro ntal cortex was found to improve synaptic function and activate the PI3K/Akt signal pathway in this region.The pharmacological blockade of the PI3K/Akt signal pathway with a PI3K/Akt inhibitor,wo rtmannin,and melatonin receptor antagonists,luzindole and 4-phenyl-2-propionamidotetralin,prevented the melatonin-induced enhancement of GABAergic synaptic function.These findings suggest that melatonin treatment can ameliorate GABAe rgic synaptic function by activating the PI3K/Akt signal pathway,which may contribute to the improvement of dendritic spine abnormalities in autism spectrum disorders.
基金Supported by the Middle-Young Age Backbone Talent Cultivation Program of Fujian Health System,No.2013-ZQNJC-2Key Projects of Science and Technology Plan of Fujian Province,No.2014Y0009
文摘AIM: To assess the impact of eukaryotic elongation factor 1 alpha 2 (eEF1A2) on hepatocellular carcinoma (HCC) cell proliferation, apoptosis, migration and invasion, and determine the underlying mechanisms.METHODS: eEF1A2 levels were detected in 62 HCC tissue samples and paired pericarcinomatous specimens, and the human HCC cell lines SK-HEP-1, HepG2 and BEF-7402, by real-time PCR and immunohistochemistry. Experimental groups included eEF1A2 silencing in BEL-7402 cells with lentivirus eEF1A2-shRNA (KD group) and eEF1A2 overexpression in SK-HEP-1 cells with eEF1A2 plasmid (OE group). Non-transfected cells (control group) and lentivirus-based empty vector transfected cells (NC group) were considered control groups. Cell proliferation (MTT and colony formation assays), apoptosis (Annexin V-APC assay), cell cycle (DNA ploidy assay), and migration and invasion (Transwell assays) were assessed. Protein levels of PI3K/Akt/NF-κB signaling effectors were evaluated by Western blot.RESULTS: eEF1A2 mRNA and protein levels were significantly higher in HCC cancer tissue samples than in paired pericarcinomatous and normal specimens. SK-HEP-1 cells showed lower eEF1A2 mRNA levels; HepG2 and BEL-7402 cells showed higher eEF1A2 mRNA levels, with BEL-7402 cells displaying the highest amount. Efficient eEF1A2 silencing resulted in reduced cell proliferation, migration and invasion, increased apoptosis, and induced cell cycle arrest. The PI3K/Akt/NF-κB signaling pathway was notably inhibited. Inversely, eEF1A2 overexpression resulted in promoted cell proliferation, migration and invasion.CONCLUSION: eEF1A2, highly expressed in HCC, is a potential oncogene. Its silencing significantly decreases HCC tumorigenesis, likely by inhibiting PI3K/Akt/NF-κB signaling.
基金Supported by Doctoral Special Research Fund of Qiqihar Medical College,No.QY2016B-06
文摘BACKGROUND Histone Lysine Specific Demethylase 1(LSD1)is the first histone demethylase to be discovered,which regulates various biological functions by making lysine of histone H3K4,H3K9 and non-histone substrates demethylated.Abnormal regulation of LSD1 is closely related to the occurrence and development of gastric cancer.The change of LSD1 expression level plays an important role in the proliferation and metastasis of gastric cancer cells.The study of its function and mechanism may provide a theoretical basis for early diagnosis and targeted therapy of gastric cancer.AIM To investigate the effect of downregulation of lysine-specific demethylase 1(LSD1)expression on proliferation and invasion of gastric cancer cells and the possible regulatory mechanisms of the VEGF-C/PI3K/AKT signaling pathway.METHODS The LSD1-specific short hairpin RNA(shRNA)interference plasmid was transiently transfected,and expression of LSD1 was downregulated.The cell proliferation ability of LSD1 was observed by CCK-8 assay after downregulating expression of LSD1.Transwell invasion assay was used to observe the change of cell invasion ability after downregulating expression of LSD1.Expression of phosphorylated phosphoinositide 3-kinase(p-PI3K),PI3K,p-AKT,AKT,vascular endothelial growth factor receptor(VEGFR)-3,matrix metalloproteinase(MMP)-2 and MMP-9 in each group was detected by Western blotting.RESULTS The cell proliferation ability of transiently transfected LSD1-shRNA interference plasmid group was significantly lower than that of the control group(P<0.05).Transwell invasion assay showed that the number of cells across the membrane of the LSD1-shRNA transfection group(238.451±5.216)was significantly lower than that of the control group(49.268±6.984)(P<0.01).Western blotting showed that expression level of VEGF-C,p-PI3K,PI3K,p-AKT,AKT,VEGFR-3,MMP-2 and MMP-9 in the LSD1-shRNA group was significantly lower than that in the control group(P<0.05).CONCLUSION Downregulation of LSD1 expression inhibits metastatic potential of gastric cancer cells,and VEGF-C-mediated activation of PI3K/AKT signaling pathway,which may be an important mechanism for inhibiting lymph node metastasis in gastric cancer cells.
基金Supported by National Natural Science Foundation of China,No.817706555Special Project from the Central Government of Liaoning Province,No.2018107003+6 种基金Liaoning Province Medical Science and Technology Achievements Transformation Foundation,No.2018225120China Postdoctoral Science Foundation,No.2020M670101ZXDoctoral Scientific Research Foundation of Liaoning Province,No.2019-BS-276Science and Technology Program of Shenyang,No.19-112-4-103Youth Support Foundation of China Medical University,No.QGZ2018058Scientific Fund of Shengjing Hospital,No.201801345 Talent Project of Shengjing Hospital,No.52-30C.
文摘BACKGROUND Pancreatic cancer is a highly malignant tumor of the gastrointestinal system whose emerging resistance to chemotherapy has necessitated the development of novel antitumor treatments.Scoparone,a traditional Chinese medicine monomer with a wide range of pharmacological properties,has attracted considerable attention for its antitumor activity.AIM To explore the potential antitumor effect of scoparone on pancreatic cancer and the possible molecular mechanism of action.METHODS The target genes of scoparone were determined using both the bioinformatics and multiplatform analyses.The effect of scoparone on pancreatic cancer cell proliferation,migration,invasion,cell cycle,and apoptosis was detected in vitro.The expression of hub genes was tested using quantitative reverse transcription polymerase chain reaction(qRT-PCR),and the molecular mechanism was analyzed using Western blot.The in vivo effect of scoparone on pancreatic cancer cell proliferation was detected using a xenograft tumor model in nude mice as well as immunohistochemistry.RESULTS The hub genes involved in the suppression of pancreatic cancer by scoparone were obtained by network bioinformatics analyses using publicly available databases and platforms,including SwissTargetPrediction,STITCH,GeneCards,CTD,STRING,WebGestalt,Cytoscape,and Gepia;AKT1 was confirmed using qRT-PCR to be the hub gene.Cell Counting Kit-8 assay revealed that the viability of Capan-2 and SW1990 cells was significantly reduced by scoparone treatment exhibiting IC50 values of 225.2μmol/L and 209.1μmol/L,respectively.Wound healing and transwell assays showed that scoparone inhibited the migration and invasion of pancreatic cancer cells.Additionally,flow cytometry confirmed that scoparone caused cell cycle arrest and induced apoptosis.Scoparone also increased the expression levels of Bax and cleaved caspase-3,decreased the levels of MMP9 and Bcl-2,and suppressed the phosphorylation of Akt without affecting total PI3K and Akt.Moreover,compared with the control group,xenograft tumors,in the 200μmol/L scoparone treatment group,were smaller in volume and lighter in weight,and the percentages of Ki65-and PCNA-positive cells were decreased.CONCLUSION Our findings indicate that scoparone inhibits pancreatic cancer cell proliferation in vitro and in vivo,inhibits migration and invasion,and induces cycle arrest and apoptosis in vitro through the PI3K/Akt signaling pathway.
基金Supported by National Natural Science Foundation of China(81760806)Project of Traditional Chinese Medicine Administration of Gansu Province(GZK-2019-28)Innovation Ability Improvement Project of Higher Education Institutions of Gansu Province(2019B-103)。
文摘[Objectives]To explore the protective effects of Zuogui Pill on ^(60)Co-γ-ray-induced premature aging of rats based on phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)signaling pathway.[Methods]Sixty sexually mature female SD rats were irradiated with ^(60)Co-γ-ray(6.0 Gy,LD 40)for 24 h at one time.These rats were randomly divided into model group,Progynova group[0.18(g·kg)/d],Progynova[0.09(g·kg)/d]+Zuogui Pill high dose[23.625(g·kg)/d)]group,Zuogui Pill high dose[23.625(g·kg)/d)]group,Zuogui Pill medium dose[9.45(g·kg)/d)]group and Zuogui Pill low dose[4.725(g·kg)/d]group.The administration(once a day)lasted 21 d.The rat serum[follicle-stimulating hormone(FSH),luteinizing hormone(LH)and estradiol(E_(2))]were detected by Enzyme-linked immunosorbent assay(ELISA).The morphological changes of ovary were observed by hematoxylin-eosin(HE)staining.The apoptosis rate of granulosa cells was detected by terminal deoxynucleotidyl transferase(TdT)-mediated dUTP nick-end labeling(TUNEL).The protein expression of phosphorylated(p)-PI3K,p-Akt,p-mTOR,B-cell lymphoma-2(Bcl-2),and Bcl-2-associated X protein(Bax)in ovarian tissues were detected by Western blot.[Results]Compared with the normal group,the model group showed significant increase in the serum FSH(P<0.01),significant decrease in serum E_(2)(P<0.05),and decrease in the number of early follicles and luteum in the ovary(P<0.01).Besides,the apoptosis rate of granulosa cells increased significantly(P<0.01);the expression of p-PI3K,p-Akt,p-mTOR and Bcl-2 in ovarian tissue decreased significantly,while the expression of Bax increased significantly(P<0.01).Compared with the model group,the number of early follicles in the ovary increased and the apoptosis rate of granulosa cells decreased after intervention in each administration group.In addition,the protein expressions of p-PI3K,p-Akt,p-mTOR and Bcl-2 increased,while the expression of Bax decreased,especially in Progynova+Zuogui Pill high dose group,the differences were statistically significant(P<0.05,P<0.01).[Conclusions]Zuogui Pill may protect the radiation-injured ovary through activating the expression of PI3K/Akt/mTOR protein in ovarian tissue,increasing the amount of Bcl-2 protein and inhibiting the expression of Bax protein.
基金supported by the Chinese Medicine Research Foundation of Jiangxi Provincial Health Department of China,No.2013A040the Science and Technology Program of Jiangxi Provincial Health Department of China,No.20123023the Science and Technology Support Program of Jiangxi Province of China,No.2009BSB11209
文摘Baicalin is a flavonoid compound extracted from Scutellaria baicalensis root.Recent evidence indicates that baicalin is neuroprotective in models of ischemic stroke.Here,we investigate the neuroprotective effect of baicalin in a neonatal rat model of hypoxic-ischemic encephalopathy.Seven-day-old pups underwent left common carotid artery ligation followed by hypoxia(8% oxygen at 37°C) for 2 hours,before being injected with baicalin(120 mg/kg intraperitoneally) and examined 24 hours later.Baicalin effectively reduced cerebral infarct volume and neuronal loss,inhibited apoptosis,and upregulated the expression of p-Akt and glutamate transporter 1.Intracerebroventricular injection of the phosphoinositide 3-kinase/protein kinase B(PI3 K/Akt) inhibitor LY294002 30 minutes before injury blocked the effect of baicalin on p-Akt and glutamate transporter 1,and weakened the associated neuroprotective effect.Our findings provide the first evidence,to our knowledge that baicalin can protect neonatal rat brains against hypoxic-ischemic injury by upregulating glutamate transporter 1 via the PI3 K/Akt signaling pathway.
基金supported by the National Natural Science Foundation of China,No.81571292(to XJZ)、81601152(to YY)the Natural Science Foundation of Hebei Province of China,No.H2017206338(to RC)
文摘Rosmarinic acid(RA) can elicit a neuroprotective effect against ischemic stroke, but the precise molecular mechanism remains poorly understood. In this study, an experimental ischemic stroke model was established in CD-1 mice(Beijing Vital River Laboratory Animal Technology, Beijing, China) by occluding the right middle cerebral artery for 1 hour and allowing reperfusion for 24 hours. After intraperitoneally injecting model mice with 10, 20, or 40 mg/kg RA, functional neurological deficits were evaluated using modified Longa scores. Subsequently, cerebral infarct volume was measured using TTC staining and ischemic brain tissue was examined for cell apoptosis with TUNEL staining. Superoxide dismutase activity and malondialdehyde levels were measured by spectrophometry. Expression of heme oxygenase-1(HO-1), nuclear factor erythroid 2-related factor 2(Nrf2), Bcl-2, Bax, Akt, and phospho-Ser473 Akt proteins in ischemic brain tissue was detected by western blot, while mRNA levels of Nrf2, HO-1, Bcl-2, and Bax were analyzed using real time quantitative PCR. In addition, HO-1 enzyme activity was measured spectrophotometrically. RA(20 and 40 mg/kg) greatly improved neurological function, reduced infarct volume, decreased cell apoptosis, upregulated Bcl-2 protein and mRNA expression, downregulated Bax protein and mRNA expression, increased HO-1 and Nrf2 protein and mRNA expression, increased superoxide dismutase activity, and decreased malondialdehyde levels in ischemic brain tissue of model mice. However, intraperitoneal injection of a HO-1 inhibitor(10 mg/kg zinc protoporphyrin IX) reversed the neuroprotective effects of RA on HO-1 enzyme activity and Bcl-2 and Bax protein expression. The PI3 K/Akt signaling pathway inhibitor LY294002(10 mM) inhibited Akt phosphorylation, as well as Nrf2 and HO-1 expression. Our findings suggest that RA has anti-oxidative and anti-apoptotic properties that protect against ischemic stroke by a mechanism involving upregulation of Nrf2 and HO-1 expression via the PI3 K/Akt signaling pathway.
文摘The purpose of this study was to explore the mechanism of Solanine disrupting energy metabolism in human renal cancer ACHN cells and to clarify its target. The specific method was to culture human renal cancer ACHN cell lines, and to intervene with Solanine of high, medium and low concentrations. The content of ATP in cells was measured by ELISA method. The expression of HIF-1α protein and the expression of PI3K, AKT, p-PI3K, p-AKT in PI3K/AKT pathway were detected by Western blotting. The results showed that compared with the control group, the relative expression of p-PI3K and p-AKT showed a downward trend with the increase of Solanine concentration (P < 0.05), while the relative expression of PI3K and AKT showed no significant change (P > 0.05). In addition, the relative expression of HIF-1α also showed a downward trend (P < 0.05). According to the above results, it is suggested that Solanine can significantly inhibit the energy metabolism of renal cancer cells, the main mechanism of which is the down-regulation of HI-1αf downstream of the PI3K/Akt pathway by inhibiting the phosphorylation process of PI3K/p-PI3K and Akt/p-Akt.
基金Funding was provided by National Natural Science Foundation of China(Grant nos.31230001,U200220015).
文摘Most fungi display a mixed mating system with both asexual and sexual reproduction.The timing of the two modes of reproduction must be carefully coordinated through signal perception and coordination in the cell along with chromatin modification.Here,we investigated coordination of reproductive output by investigating the function of the histone chaper-one anti-silencing factor 1(ASF1)in a fungal species amenable to characterization of both asexual and sexual reproduction.We used knockout approach to show that SeASF1 influenced asexual and sexual reproduction in Stemphylium eturmiunum.SeASF1-deleted strains failed to produce pseudothecia,but produce abnormal conidia and showed an irregular distribution of nuclei in mycelium.Transcriptome sequencing was then used to identify genes with altered expression in the SeASF1-deleted strains.The transcriptional expression of the identified SeDJ-1 was strongly regulated by SeASF1.The interaction of SeDJ-1 and SeASF1 was confirmed using Y2H,Co-IP,and pull-down.Due to some components of phosphatidylinositol 3-kinase/protein kinase B(PI3K/AKT)signaling pathway were known to interact with DJ-1 in mammals,we verified SePI3K,an element of PI3K/AKT signaling pathway in S.eturmiunum,was directly linked to SeDJ-1 and then these two proteins were defined as a coordinator of reproduction.However,knockout of SeDJ-1 or SePI3K altered the asexual and sexual repro-duction,but SePI3K recovered the asexual and sexual development of∆Sedj-1.The SeDJ-1-M6 segment of SeDJ-1 was essential for its interaction with SePI3K and played a critical role in restoring sexual reproduction in the∆Sepi3k,providing a deep understanding of the regulatory mechanism of SeDJ-1 in S.eturmiunum development.Summarily,SeASF1 is able to trigger SeDJ-1 and SeDJ-1can also activate SePI3K,which is orchestrally involved in asexual and sexual reproduction in S.eturmiunum.All these results reveal that SeASF1 manipulates asexual and sexual reproduction in S.eturmiunum by SeDJ-1 perception of PI3K/AKT signaling pathway.These data highlight the deep similarities in coordinating asexual and sexual processes in both fungi and eukaryotes in general.
基金supported by the National Natural Science Foundation of China(No.31370379)the National Natural Science Foundation Youth Project Financing(No.81201610)+1 种基金State Ethnic Affairs Commission Research Project(No.CMZY13012)Universities of Hubei Province Outstanding Youth Scientific Innovation Team Plan(No.T201220)
文摘The aim of the present study was to investigate the protective effects and underlying mechanisms of Garcinia xanthochymus, a perennial medicinal plant native to Yunnan, China, against H2 O2-induced oxidative damage in rat pheochromacytoma PC12 cells. Preincubation of PC12 cells with fruit Et OAc fraction(fruit-EFr., 12.5–50 μmol·L^(-1)) of G. xanthochymus for 24 h prior to H_2O_2 exposure markedly improved cell viability and increased the activities of antioxidant enzymes(superoxide dismutase, catalase, and heme oxygenase-1 [HO-1]), prevented lactate dehydrogenase release and lipid peroxidation malondialdehyde production, attenuated the decrease of matrix metalloproteinases(MMP), and scavenged reactive oxygen species(ROS). Fruit-EFr. also reduced BAX and cytochrome C expression and improved BCL-2 expression, thereby decreasing the ratio of BAX to BCL-2. Fruit-EFr. activated the nuclear translocation of NRF2 to increase HO-1 and induced the phosphorylation of AKT. Its cytoprotective effect was abolished by LY294002, a specific inhibitor of PI3 K. Taken together, the above findings suggested that fruit-EFr.of G. xanthochymus could enhance cellular antioxidant defense capacity, at least in part, through upregulating HO-1 expression and activating the PI3 K/AKT pathway and that it could suppress H_2O_2-induced oxidative damage via PI3 K/AKT and NRF2/HO-1 signaling pathways.
基金supported by the National Natural Science Foundation of China(81772098,81801917,81801918)the Outstanding Professional and Technical Leader Program of the Shanghai Municipal Science and Technology Commission(18XD1423700)+3 种基金the Clinical Multi-Disciplinary Team Research Program of 9th People’s Hospital,Shanghai Jiao Tong University School of Medicine(2017-1-007)the Clinical Research Program of 9th People’s Hospital,Shanghai Jiao Tong University School of Medicine(JYLJ027)the Shanghai Municipal Education Commission Gaofeng Clinical Medicine Grant Support(20152227)the project of Science and Technology Commission of Shanghai Municipality(17411952800,18441904500).
文摘Background:Keloid is a fibrotic dermal disease characterized by an abnormal increase in fibroblast proliferation and invasion.These pathological behaviours may be related to the heterogeneity of keloid fibroblasts(KFs);however,because of a lack of effective biomarkers for KFs it is difficult to study the underlying mechanism.Our previous studies revealed that the expansion of CD26+KFs was responsible for increased keloid proliferation and invasion capabilities;the intrinsic relationship and mechanism between CD26 and keloid is therefore worthy of further investigation.The aim of this studywas to explore molecular mechanisms in the process of CD26 upregulated KFs proliferation and invasion abilities,and provide more evidence for CD26 as an effective biomarker of keloid and a new clinical therapeutic target.Methods:Flow cytometry was performed to isolate CD26+/CD26−fibroblasts from KFs and normal fibroblasts.To generate stably silenced KFs for CD26 and insulin-like growth factor-1 receptor(IGF-1R),lentiviral particles encoding shRNA targeting CD26 and IGF-1R were used for transfection.Cell proliferations were analysed by cell counting kit-8 assay and 5-ethynyl-2-deoxyuridine(EdU)incorporation assay.Scratching assay and transwell assay were used to assess cell migration and invasion abilities.To further quantify the regulatory role of CD26 expression in the relevant signalling pathway,RT-qPCR,western blot,ELISA,PI3K activity assay and immunofluorescence were used.Results:Aberrant expression of CD26 in KFs was proven to be associated with increased proliferation and invasion of KFs.Furthermore,the role of the IGF-1/IGF-1 receptor axis was also studied in CD26 and was found to upregulate KF proliferation and invasion.The PI3K/protein kinase B(AKT)/mammalian target of rapamycin(mTOR)pathway was shown to affect CD26-regulated KF proliferation and invasion by increasing phosphorylation levels of S6 kinase and 4E-binding protein.Conclusions:CD26 can be the effective biomarker for KFs,and its expression is closely related to proliferation and invasion in keloids through the IGF-1-induced PI3K/AKT/mTOR pathway.This work provides a novel perspective on the pathological mechanisms affecting KFs and therapeutic strategies against keloids.