期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Ultra-lightweight CNN design based on neural architecture search and knowledge distillation: A novel method to build the automatic recognition model of space target ISAR images 被引量:3
1
作者 Hong Yang Ya-sheng Zhang +1 位作者 Can-bin Yin Wen-zhe Ding 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第6期1073-1095,共23页
In this paper,a novel method of ultra-lightweight convolution neural network(CNN)design based on neural architecture search(NAS)and knowledge distillation(KD)is proposed.It can realize the automatic construction of th... In this paper,a novel method of ultra-lightweight convolution neural network(CNN)design based on neural architecture search(NAS)and knowledge distillation(KD)is proposed.It can realize the automatic construction of the space target inverse synthetic aperture radar(ISAR)image recognition model with ultra-lightweight and high accuracy.This method introduces the NAS method into the radar image recognition for the first time,which solves the time-consuming and labor-consuming problems in the artificial design of the space target ISAR image automatic recognition model(STIIARM).On this basis,the NAS model’s knowledge is transferred to the student model with lower computational complexity by the flow of the solution procedure(FSP)distillation method.Thus,the decline of recognition accuracy caused by the direct compression of model structural parameters can be effectively avoided,and the ultralightweight STIIARM can be obtained.In the method,the Inverted Linear Bottleneck(ILB)and Inverted Residual Block(IRB)are firstly taken as each block’s basic structure in CNN.And the expansion ratio,output filter size,number of IRBs,and convolution kernel size are set as the search parameters to construct a hierarchical decomposition search space.Then,the recognition accuracy and computational complexity are taken as the objective function and constraint conditions,respectively,and the global optimization model of the CNN architecture search is established.Next,the simulated annealing(SA)algorithm is used as the search strategy to search out the lightweight and high accuracy STIIARM directly.After that,based on the three principles of similar block structure,the same corresponding channel number,and the minimum computational complexity,the more lightweight student model is designed,and the FSP matrix pairing between the NAS model and student model is completed.Finally,by minimizing the loss between the FSP matrix pairs of the NAS model and student model,the student model’s weight adjustment is completed.Thus the ultra-lightweight and high accuracy STIIARM is obtained.The proposed method’s effectiveness is verified by the simulation experiments on the ISAR image dataset of five types of space targets. 展开更多
关键词 Space target isar image Neural architecture search Knowledge distillation Lightweight model
下载PDF
A modified OMP method for multi-orbit three dimensional ISAR imaging of the space target
2
作者 JIANG Libing ZHENG Shuyu +2 位作者 YANG Qingwei YANG Peng WANG Zhuang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第4期879-893,共15页
The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is propos... The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is proposed based on mutliorbit observation data and an improved orthogonal matching pursuit(OMP)algorithm.Firstly,the 3D scattered field data is converted into a set of 2D matrix by stacking slices of the 3D data along the elevation direction dimension.Then,an improved OMP algorithm is applied to recover the space target's amplitude information via the 2D matrix data.Finally,scattering centers can be reconstructed with specific three dimensional locations.Numerical simulations are provided to demonstrate the effectiveness and superiority of the proposed 3D imaging method. 展开更多
关键词 three dimensional inverse synthetic aperture radar(3D isar)imaging space target improved orthogonal matching pursuit(OMP)algorithm scattering centers
下载PDF
ISAR cross-range scaling based on the MUSIC technique 被引量:2
3
作者 LIU Qiuchen WANG Yong ZHANG Qingxiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第5期928-938,共11页
Cross-range scaling plays an important role in the inverse synthetic aperture radar(ISAR) imaging. Many of the published cross-range scaling algorithms are based on the fast Fourier transformation(FFT). However, the F... Cross-range scaling plays an important role in the inverse synthetic aperture radar(ISAR) imaging. Many of the published cross-range scaling algorithms are based on the fast Fourier transformation(FFT). However, the FFT technique is resolution limited, so that the FFT-based algorithms will fail in the rotation velocity(RV) estimation of the slow rotation target. In this paper,we propose an accurate cross-range scaling algorithm based on the multiple signal classification(MUSIC) method. We first select some range bins with the mono-component linear frequency modulated(LFM) signal model. Then, we dechirp the signal of each selected range bin into the form of sinusoidal signal, and utilize the super-resolution MUSIC technique to accurately estimate the frequency. After processing all the range bins, a linear relationship related to the RV can be obtained. Eventually, the ISAR image can be scaled. The proposal can precisely estimate the small RV of the slow rotation target with low computational complexity. Furthermore, the proposal can also be used in the case of cross-range scaling for the sparse aperture data. Experimental results with the simulated and raw data validate the superiority of the novel method. 展开更多
关键词 inverse synthetic aperture radar(isar)imaging cross-range scaling multiple signal classification(MUSIC)method slow rotation target sparse aperture
下载PDF
Fast ISAR imaging method based on scene segmentation 被引量:1
4
作者 Mingjiu Lü Shaodong Li +2 位作者 Wenfeng Chen Jun Yang Xiaoyan Ma 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第6期1078-1088,共11页
Although compressed sensing inverse synthetic aperture radar(ISAR) imaging methods are widely used in radar signal processing, its reconstructing time and memory storage space requirements are very high. The main reas... Although compressed sensing inverse synthetic aperture radar(ISAR) imaging methods are widely used in radar signal processing, its reconstructing time and memory storage space requirements are very high. The main reason is that large scene reconstruction needs a higher dimension of the sensing matrix. To reduce this limitation, a fast high resolution ISAR imaging method,which is based on scene segmentation for random chirp frequencystepped signals, is proposed. The idea of scene segmentation is used to solve the problems aforementioned. In the method,firstly, the observed scene is divided into multiple sub-scenes and then the sub-scenes are reconstructed respectively. Secondly, the whole image scene can be obtained through the stitching of the sub-scenes. Due to the reduction of the dimension of the sensing matrix, the requirement of the memory storage space is reduced substantially. In addition, due to the nonlinear superposition of the reconstructed time of the segmented sub-scenes, the reconstruction time is reduced, and the purpose of fast imaging is achieved.Meanwhile, the feasibility and the related factors which affect the performance of the proposed method are also analyzed, and the selection criterion of the scene segmentation is afforded. Finally,theoretical analysis and simulation results demonstrate the feasibility and effectiveness of the proposed method. 展开更多
关键词 compressed sensing(CS) inverse synthetic aperture radar(isar) imaging random chirp frequency-stepped signal scene segmentation
下载PDF
Simulation of two-dimensional ISAR decoys on a moving platform 被引量:1
5
作者 Xiaoyi Pan Wei Wang +2 位作者 Qixiang Fu Dejun Feng Guoyu Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第2期250-257,共8页
It is potentially useful to perform deception jamming using the digital image synthesizer (DIS) since it can form a two-dimensional (2D) decoy but suffers from multiple decoys ge- neration. Inspired by the intermi... It is potentially useful to perform deception jamming using the digital image synthesizer (DIS) since it can form a two-dimensional (2D) decoy but suffers from multiple decoys ge- neration. Inspired by the intermittent sampling repeater jamming (ISRJ), the generation of inverse synthetic aperture radar (ISAR) decoys is addressed, associated with the DIS and the ISRJ. Radar pulses are sampled intermittently and modulated by the scatter- ing model of a false target by mounting the jammer on a moving platform, and then the jamming signals are retransmitted to the radar and a train of decoys are induced after ISAR imaging. A scattering model of Yak-42 is adopted as the false-target mo- dulation model to verify the effectiveness of the jamming method based on the standard ISAR motion compensation and image for- mation procedure. 展开更多
关键词 inverse synthetic aperture radar(isar) digital image synthesizer(DIS) intermittent sampling decoys
下载PDF
Target rotation parameter estimation for ISAR imaging via frame processing
6
作者 Xuezhi Wang Yajing Huang +1 位作者 Weiping Yang Bill Moran 《红外与激光工程》 EI CSCD 北大核心 2016年第3期7-17,共11页
Frame processing method offers a model-based approach to Inverse Synthetic Aperture Radar(ISAR) imaging. It also provides a way to estimate the rotation rate of a non-cooperative target from radar returns via the fram... Frame processing method offers a model-based approach to Inverse Synthetic Aperture Radar(ISAR) imaging. It also provides a way to estimate the rotation rate of a non-cooperative target from radar returns via the frame operator properties. In this paper, the relationship between the best achievable ISAR image and the reconstructed image from radar returns was derived in the framework of Finite Frame Processing theory. We show that image defocusing caused by the use of an incorrect target rotation rate is interpreted under the FP method as a frame operator mismatch problem which causes energy dispersion. The unknown target rotation rate may be computed by optimizing the frame operator via a prominent point. Consequently, a prominent intensity maximization method in FP framework was proposed to estimate the underlying target rotation rate from radar returns. In addition, an image filtering technique was implemented to assist searching for a prominent point in practice. The proposed method is justified via a simulation analysis on the performance of FP imaging versus target rotation rate error.Effectiveness of the proposed method is also confirmed from real ISAR data experiments. 展开更多
关键词 isar imaging frame theory frame processing target rotation rate radar waveforms
下载PDF
Analysis of inverse synthetic aperture radar imaging in the presence of time-varying plasma sheath 被引量:1
7
作者 谢曜聪 李小平 +4 位作者 沈方芳 白博文 刘彦明 陈旭阳 石磊 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第3期19-32,共14页
The plasma sheath can induce radar signal modulation,causing not only ineffective target detection,but also defocusing in inverse synthetic aperture radar(ISAR)imaging.In this paper,through establishing radar echo mod... The plasma sheath can induce radar signal modulation,causing not only ineffective target detection,but also defocusing in inverse synthetic aperture radar(ISAR)imaging.In this paper,through establishing radar echo models of the reentry object enveloped with time-varying plasma sheath,we simulated the defocusing of ISAR images in typical environment.Simulation results suggested that the ISAR defocusing is caused by false scatterings,upon which the false scatterings’formation mechanism and distribution property are analyzed and studied.The range of false scattering correlates with the electron density fluctuation frequency.The combined value of the electron density fluctuation and the pulse repetition frequency jointly determines the Doppler of false scattering.Two measurement metrics including peak signal-to-noise ratio and structural similarity are used to evaluate the influence of ISAR imaging. 展开更多
关键词 isar imaging plasma sheath TIME-VARYING transmission line matrix DEFOCUSING
下载PDF
High resolution inverse synthetic aperture radar imaging of three-axis-stabilized space target by exploiting orbital and sparse priors
8
作者 马俊涛 高梅国 +3 位作者 郭宝锋 董健 熊娣 冯祺 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第10期459-471,共13页
The development of inverse synthetic aperture radar (ISAR) imaging techniques is of notable significance for moni- toring, tracking and identifying space targets in orbit. Usually, a well-focused ISAR image of a spa... The development of inverse synthetic aperture radar (ISAR) imaging techniques is of notable significance for moni- toring, tracking and identifying space targets in orbit. Usually, a well-focused ISAR image of a space target can be obtained in a deliberately selected imaging segment in which the target moves with only uniform planar rotation. However, in some imaging segments, the nonlinear range migration through resolution cells (MTRCs) and time-varying Doppler caused by the three-dimensional rotation of the target would degrade the ISAR imaging performance, and it is troublesome to realize accurate motion compensation with conventional methods. Especially in the case of low signal-to-noise ratio (SNR), the estimation of motion parameters is more difficult. In this paper, a novel algorithm for high-resolution ISAR imaging of a space target by using its precise ephemeris and orbital motion model is proposed. The innovative contributions are as follows. 1) The change of a scatterer projection position is described with the spatial-variant angles of imaging plane calculated based on the orbital motion model of the three-axis-stabilized space target. 2) A correction method of MTRC in slant- and cross-range dimensions for arbitrarily imaging segment is proposed. 3) Coarse compensation for translational motion using the precise ephemeris and the fine compensation for residual phase errors by using sparsity-driven autofo- cus method are introduced to achieve a high-resolution ISAR image. Simulation results confirm the effectiveness of the proposed method. 展开更多
关键词 space target isar imaging MTRC correction SPARSITY
下载PDF
Compressive Sensing Inverse Synthetic Aperture Radar Imaging Based on Gini Index Regularization 被引量:2
9
作者 Can Feng Liang Xiao Zhi-Hui Wei 《International Journal of Automation and computing》 EI CSCD 2014年第4期441-448,共8页
In compressive sensing(CS) based inverse synthetic aperture radar(ISAR) imaging approaches, the quality of final image significantly depends on the number of measurements and the noise level. In this paper, we propose... In compressive sensing(CS) based inverse synthetic aperture radar(ISAR) imaging approaches, the quality of final image significantly depends on the number of measurements and the noise level. In this paper, we propose an improved version of CSbased method for inverse synthetic aperture radar(ISAR) imaging. Different from the traditional l1 norm based CS ISAR imaging method, our method explores the use of Gini index to measure the sparsity of ISAR images to improve the imaging quality. Instead of simultaneous perturbation stochastic approximation(SPSA), we use weighted l1 norm as the surrogate functional and successfully develop an iteratively re-weighted algorithm to reconstruct ISAR images from compressed echo samples. Experimental results show that our approach significantly reduces the number of measurements needed for exact reconstruction and effectively suppresses the noise. Both the peak sidelobe ratio(PSLR) and the reconstruction relative error(RE) indicate that the proposed method outperforms the l1 norm based method. 展开更多
关键词 Compressive sensing inverse synthetic aperture radar (isar) imaging SPARSITY Gini index REGULARIZATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部