Background Intestinal barrier is a dynamic interface between the body and the ingested food components, however, dietary components or xenobiotics could compromise intestinal integrity, causing health risks to the hos...Background Intestinal barrier is a dynamic interface between the body and the ingested food components, however, dietary components or xenobiotics could compromise intestinal integrity, causing health risks to the host. Gossypol, a toxic component in cottonseed meal(CSM), caused intestinal injury in fish or other monogastric animals. It has been demonstrated that probiotics administration benefits the intestinal barrier integrity, but the efficacy of probiotics in maintaining intestinal health when the host is exposed to gossypol remains unclear. Here, a strain(YC) affiliated to Pediococcus pentosaceus was isolated from the gut of Nile tilapia(Oreochromis niloticus) and its potential to repair gossypol-induced intestinal damage was evaluated.Results A total of 270 Nile tilapia(2.20 ± 0.02 g) were allotted in 3 groups with 3 tanks each and fed with 3 diets including CON(control diet), GOS(control diet containing 300 mg/kg gossypol) and GP(control diet containing 300 mg/kg gossypol and 10^(8) colony-forming unit(CFU)/g P. pentosaceus YC), respectively. After 10 weeks, addition of P. pentosaceus YC restored growth retardation and intestinal injury induced by gossypol in Nile tilapia. Transcriptome analysis and si RNA interference experiments demonstrated that NOD-like receptors(NLR) family caspase recruitment domain(CARD) domain containing 3(Nlrc3) inhibition might promote intestinal stem cell(ISC) proliferation, as well as maintaining gut barrier integrity. 16S r RNA sequencing and gas chromatography-mass spectrometry(GC-MS) revealed that addition of P. pentosaceus YC altered the composition of gut microbiota and increased the content of propionate in fish gut. In vitro studies on propionate's function demonstrated that it suppressed nlrc3 expression and promoted wound healing in Caco-2 cell model.Conclusions The present study reveals that P. pentosaceus YC has the capacity to ameliorate intestinal barrier injury by modulating gut microbiota composition and elevating propionate level. This finding offers a promising strategy for the feed industry to incorporate cottonseed meal into fish feed formulations.展开更多
The gene iscS-3 from ,4cidithiobacillus ferrooxidans may play a central role in the delivery of sulfur to a variety of metabolic pathways in this organism. For insight into the sulfur metabolic mechanism of the bacter...The gene iscS-3 from ,4cidithiobacillus ferrooxidans may play a central role in the delivery of sulfur to a variety of metabolic pathways in this organism. For insight into the sulfur metabolic mechanism of the bacteria, an integral three-dimensional (3D) molecular structure of the protein encoded by this gene was built by homology modeling techniques, refined by molecular dynamics simulations, assessed by PROFILE-3D and PROSTAT programs and further used to search bind sites, carry out flexible docking with cofactor pyridoxal 5'-phosphate(PLP) and substrate cysteine and hereby detect its key residues. Through these procedures, the detail conformations of PLP-IscS(P-I) and cysteine-PLP-IscS(C-P-I) complexes were obtained. In P-I complex, the residues of Lys208, His106, Thr78, Ser205, His207, Asp182 and Gln185 have large interaction energies and/or hydrogen bonds fixation with PLP. In C-P-I complex, the amino group in cysteine is very near His106, Lys208 and PLP, the interaction energies for cysteine with them are very high. The above results are well consistent with those experimental facts of the homologues from other sources. Interestingly, the four residues of Glul05, Glu79, Ser203 and Hisl80 in P-I docking and the residue of Lys213 in C-P-I docking also have great interaction energies, which are fitly conservation in IscSs from all kinds of sources but have not been identified before. From these results, this gene can be confirmed at 3D level to encode the iron-sulfur cluster assembly protein IscS and subsequently play a sulfur traffic role. Furthermore, the substrate cysteine can be presumed to be effectively recruited into the active site. Finally, the above detected key residues can be conjectured to be directly responsible for the bind and/or catalysis of PLP and cysteine.展开更多
基金supported by the Provincial Science and Technology Innovative Program for Carbon Peak and Carbon neutrality of Jiangsu of China (BE2022422)National Natural Science Foundation of China (32373145)。
文摘Background Intestinal barrier is a dynamic interface between the body and the ingested food components, however, dietary components or xenobiotics could compromise intestinal integrity, causing health risks to the host. Gossypol, a toxic component in cottonseed meal(CSM), caused intestinal injury in fish or other monogastric animals. It has been demonstrated that probiotics administration benefits the intestinal barrier integrity, but the efficacy of probiotics in maintaining intestinal health when the host is exposed to gossypol remains unclear. Here, a strain(YC) affiliated to Pediococcus pentosaceus was isolated from the gut of Nile tilapia(Oreochromis niloticus) and its potential to repair gossypol-induced intestinal damage was evaluated.Results A total of 270 Nile tilapia(2.20 ± 0.02 g) were allotted in 3 groups with 3 tanks each and fed with 3 diets including CON(control diet), GOS(control diet containing 300 mg/kg gossypol) and GP(control diet containing 300 mg/kg gossypol and 10^(8) colony-forming unit(CFU)/g P. pentosaceus YC), respectively. After 10 weeks, addition of P. pentosaceus YC restored growth retardation and intestinal injury induced by gossypol in Nile tilapia. Transcriptome analysis and si RNA interference experiments demonstrated that NOD-like receptors(NLR) family caspase recruitment domain(CARD) domain containing 3(Nlrc3) inhibition might promote intestinal stem cell(ISC) proliferation, as well as maintaining gut barrier integrity. 16S r RNA sequencing and gas chromatography-mass spectrometry(GC-MS) revealed that addition of P. pentosaceus YC altered the composition of gut microbiota and increased the content of propionate in fish gut. In vitro studies on propionate's function demonstrated that it suppressed nlrc3 expression and promoted wound healing in Caco-2 cell model.Conclusions The present study reveals that P. pentosaceus YC has the capacity to ameliorate intestinal barrier injury by modulating gut microbiota composition and elevating propionate level. This finding offers a promising strategy for the feed industry to incorporate cottonseed meal into fish feed formulations.
基金Project(2004CB619201) supported by the National Basic Research Program of China Project(50321402) supported by the National Natural Science Foundation of China
文摘The gene iscS-3 from ,4cidithiobacillus ferrooxidans may play a central role in the delivery of sulfur to a variety of metabolic pathways in this organism. For insight into the sulfur metabolic mechanism of the bacteria, an integral three-dimensional (3D) molecular structure of the protein encoded by this gene was built by homology modeling techniques, refined by molecular dynamics simulations, assessed by PROFILE-3D and PROSTAT programs and further used to search bind sites, carry out flexible docking with cofactor pyridoxal 5'-phosphate(PLP) and substrate cysteine and hereby detect its key residues. Through these procedures, the detail conformations of PLP-IscS(P-I) and cysteine-PLP-IscS(C-P-I) complexes were obtained. In P-I complex, the residues of Lys208, His106, Thr78, Ser205, His207, Asp182 and Gln185 have large interaction energies and/or hydrogen bonds fixation with PLP. In C-P-I complex, the amino group in cysteine is very near His106, Lys208 and PLP, the interaction energies for cysteine with them are very high. The above results are well consistent with those experimental facts of the homologues from other sources. Interestingly, the four residues of Glul05, Glu79, Ser203 and Hisl80 in P-I docking and the residue of Lys213 in C-P-I docking also have great interaction energies, which are fitly conservation in IscSs from all kinds of sources but have not been identified before. From these results, this gene can be confirmed at 3D level to encode the iron-sulfur cluster assembly protein IscS and subsequently play a sulfur traffic role. Furthermore, the substrate cysteine can be presumed to be effectively recruited into the active site. Finally, the above detected key residues can be conjectured to be directly responsible for the bind and/or catalysis of PLP and cysteine.