We study the extinction properties of highly porous Ballistic Cluster-Cluster Aggregate dust aggregates in a wide range of complex refractive indices (1.4 ≤ n 〈 2.0, 0.001 ≤ k 〈 1.0) and wavelengths (0.11 μm ...We study the extinction properties of highly porous Ballistic Cluster-Cluster Aggregate dust aggregates in a wide range of complex refractive indices (1.4 ≤ n 〈 2.0, 0.001 ≤ k 〈 1.0) and wavelengths (0.11 μm 〈 A 〈 3.4 μm). An attempt has been made for the first time to investigate the correlation among extinction efficiency (Qext), composition of dust aggregates (n, k), wavelength of radiation (A) and size parameter of the monomers (x). If k is fixed at any value between 0.001 and 1.0, Qext increases with increase of n from 1.4 to 2.0. Qext and n are correlated via linear regression when the cluster size is small, whereas the correlation is quadratic at moderate and higher sizes of the cluster. This feature is observed at all wavelengths (ultraviolet to optical to infrared). We also find that the variation of Qext with n is very small when A is high. When n is fixed at any value between 1.4 and 2.0, it is observed that Qext and k are correlated via a polynomial regression equation (of degree 1, 2, 3 or 4), where the degree of the equation depends on the cluster size, n and A. The correlation is linear for small size and quadratic/cubic/quartic for moderate and higher sizes. We have also found that Qext and x are correlated via a polynomial regression (of degree 3, 4 or 5) for all values of n. The degree of regression is found to be n and k-dependent. The set of relations obtained from our work can be used to model interstellar extinction for dust aggregates in a wide range of wavelengths and complex refractive indices.展开更多
Dust extinction law is crucial to recover the intrinsic energy distribution of celestial objects and infer the characteristics of interstellar dust.Based on the traditional pair method,an improved pair method is propo...Dust extinction law is crucial to recover the intrinsic energy distribution of celestial objects and infer the characteristics of interstellar dust.Based on the traditional pair method,an improved pair method is proposed to model the dust extinguished spectral energy distribution(SED)of an individual star.Instead of the mathematically parameterizing extinction curves,the extinction curves in this work are directly from the silicate-graphite dust model,so that the dust extinction law can be obtained and the dust properties can be analyzed simultaneously.The ATLAS9 stellar model atmosphere is adopted for the intrinsic SEDs in this work,while the silicate-graphite dust model with a dust size distribution of dn da~a^(-a)exp(-a a_(c)),0.005<a<5μmfor each component is adopted for the model extinction curves.One typical extinction tracer in the dense region(V410 Anon9)and one in the diffuse region(Cyg OB2#12)of the Milky Way are chosen to test the reliability and the practicability of the improved pair method in different stellar environments.The results are consistent with their interstellar environments and are in agreement with the previous observations and studies,which prove that the improved pair method is effective and applicable in different stellar environments.In addition to the reliable extinction results,the derived parameters in the dust model can be used to analyze the dust properties,which cannot be achieved by other methods with the mathematical extinction models.With the improved pair method,the stellar parameters can also be inferred and the extinction law beyond the wavelengths of observed data can be predicted based on the dust model as well.展开更多
Polycyclic aromatic hydrocarbons(PAHs),PANHs,and peptoids dust spectral calculations from the interstellar medium(ISM)are important for dust observations and theory.Our goal is to calculate the radiation spectrum of s...Polycyclic aromatic hydrocarbons(PAHs),PANHs,and peptoids dust spectral calculations from the interstellar medium(ISM)are important for dust observations and theory.Our goal is to calculate the radiation spectrum of spherical PAHs dust clusters in a vacuum containing ionized and applied in the presence of an electric field.We propose a new simple computational model to calculate the size of three-dimensional spherical dust clusters formed by different initial dust structures.By the Vienna Ab-initio Simulation Package code,the density functional theory with the generalized approximation was used to calculate the electron density gradient and obtain the radiation spectrum of dust.When the radius of spherical dust clusters is~[0.009-0.042]μm,the dust radiation spectrum agrees well with the Z=0.02 mMMP stellar spectra,and the PAHs radiation spectrum of NGC 4676 at wavelengths of(0-5]μm and(5-10]μm,respectively.In the ionized state,the N-PAH,C_(10)H_(9)N,2(C_(4)H_(4))^(1+),and peptoids 4(CHON),(C_(8)H_(10)N_(2)O_(5))^(1+)dust clusters at 3.3μm,while the 2(C_(22)H_(21)N_(3)O_(2))^(1+),4(CHON)dust clusters at 5.2μm have obvious peaks.There is a characteristic of part of PAHs and peptoids clusters radiation at the nearinfrared wavelength of 2μm.However,especially after applying an electric field to the dust,the emission spectrum of the dust increases significantly in the radiation wavelength range[3-10]μm.Consequently,the dust clusters of PAHs,PANHs,and peptoids of the radius size~[0.009-0.042]μm are likely to exist in the ISM.展开更多
The massive star forming region S 233 IR is observed in the molecular lines CO J = 2–1, 3–2, NH<SUB>3</SUB> (1,1), (2,2) and the 870 um dust continuum. Four submillimeter continuum sources, labelled SMM ...The massive star forming region S 233 IR is observed in the molecular lines CO J = 2–1, 3–2, NH<SUB>3</SUB> (1,1), (2,2) and the 870 um dust continuum. Four submillimeter continuum sources, labelled SMM 1–4, are revealed in the 870 um dust emission. The main core, SMM1, is found to be associated with a deeply embedded near infrared cluster in the northeast; while the weaker source SMM2 coincides with a more evolved cluster in the southwest. The best fit spectral energy distribution of SMM1 gives an emissivity of β = 1.6, and temperatures of 32 K and 92 K for the cold- and hot-dust components. An SMM1 core mass of 246 M<SUB>☉</SUB>, and a total mass of 445 M<SUB>☉</SUB> are estimated from the 870 um dust continuum emission. SMM1 is found to have a temperature gradient decreasing from inside out, indicative of the presence of interior heating sources. The total outflow gas mass as traced by the CO J = 3–2 emission is estimated to be 35 M<SUB>☉</SUB>. Low velocity outflows are also found in the NH<SUB>3</SUB> (1,1) emission. The non-thermal dominant NH<SUB>3</SUB> line width as well as the substantial core mass suggest that the SMM1 core is a ``turbulent, massive dense core', in the process of forming a group or a cluster of stars. The much higher star formation efficiency found in the southwest cluster supports the suggestion that this cluster is more evolved than the northeast one. Large near infrared photometric variations found in the source PCS-IR93, a previously found highly polarized nebulosity, indicate an underlying star showing the FU Orionis type of behavior.展开更多
We map the dark molecular cloud core of L134 in the C^(18)O (J = 1 - 0)emission line using the PMO 13.7m telescope, and present a contour map of integrated intensity ofC^(18)O (J = 1 - 0) emission. The C^(18)O cloud i...We map the dark molecular cloud core of L134 in the C^(18)O (J = 1 - 0)emission line using the PMO 13.7m telescope, and present a contour map of integrated intensity ofC^(18)O (J = 1 - 0) emission. The C^(18)O cloud is inside the distribution of extinction A_B, thevisual extinction of blue light, as well as inside the ^(13)CO cloud in the L134 region. Thedepletion factors in this C^(18)O cloud are generally greater than unity, which means there is gasdepletion onto dust. Since only a minimum A_B - 9.7 mag is available, and our observations measureboth undepleted and depleted regions along the line of sight, the depletion factors could verylikely be larger in the central core than the calculated value. So we conclude that depletion doesoccur in the bulk of the C^(18)O cloud through a comparison between the C^(18)O and blue extinctionmaps in the L134 region. There is no direct evidence as yet for star formation in L134, and so coreson the verge of collapse will not be visible in CO and other gas molecules.展开更多
We present multi-wavelength imagery of the merger remnant galaxy NGC 1316 with an objective to study the dust content and its association with the other phases of the interstellar medium. Color-index maps as well as e...We present multi-wavelength imagery of the merger remnant galaxy NGC 1316 with an objective to study the dust content and its association with the other phases of the interstellar medium. Color-index maps as well as extinction maps derived for this galaxy reveal an intricate and complex dust morphology in NGC 1316, i.e. there is a prominent lane in the inner part, while at about 6-7 kpc it apparently takes the form of an arc-like pattern extending along the northeast direction. In addition to this, several other dust clumps and knots are also evident in this galaxy. The dust emission mapped using Spitzer data at 8 μm indicates even more complex morphological structures of the dust in NGC 1316. The extinction curve derived over the optical to near-IR bands closely follows the standard Galactic curve, suggesting similar properties of the dust grains. The dust content of NGC 1316, estimated from optical extinction, is ,- 2.13 × 10^5 M⊙. This is a lower limit compared to that estimated using the IRAS flux densities of ,-5.17× 10^6 M⊙ and the flux densities at 24, 70 and 160 p.m from MIPS ,-3.2× 10^7 M⊙. High resolution Chandra observations of this merger remnant system have provided an unprecedented view of the complex nature exhibited by the distribution of hot gas in NGC 1316, which closely matches the morphology of ionized gas and to some extent also the dust. X-ray color-color plots for the resolved sources within the optical D25 extent of NGC 1316 have enabled us to separate them into different classes.展开更多
The observed linear polarization data of comet Hyakutake are studied at wavelengths λ=0.365 μm,λ=0.485 μm and 0.684μm through simulations using Ballistic Particle-Cluster Aggregate and Ballistic Cluster-Cluster A...The observed linear polarization data of comet Hyakutake are studied at wavelengths λ=0.365 μm,λ=0.485 μm and 0.684μm through simulations using Ballistic Particle-Cluster Aggregate and Ballistic Cluster-Cluster Aggregate aggregates of 128 spherical monomers.We first found that the size parameter of the monomer,x ~ 1.56-1.70,turned out to be the most suitable which provides the best fits to the observed dust scattering properties at three wavelengths:λ=0.365 μm,0.485μm and 0.684μm.Thus,the effective radius of the aggregate (r) lies in the range 0.45 μm ≤ r ≤ 0.49 μm at λ=0.365 μm;0.60 μm ≤ r ≤ 0.66 μm at λ=0.485 μm and 0.88 μm ≤ r ≤ 0.94 μm at λ=0.684 μm.Now using superposition T-MATRIX code and the power-law size distribution,n(r) ~ r-3,the best-fitting values of complex refractive indices are calculated for the observed polarization data at the above three wavelengths.The best-fitting complex refractive indices (n,k) are found to be (1.745,0.095) at λ=0.365 μm,(1.743,0.100) at λ=0.485 μm and (1.695,0.100) at λ=0.684 μm.The refractive indices derived from the present analysis correspond to a mixture of both silicates and organics,which are in good agreement with the in situ measurement of comets by different spacecraft.展开更多
Broadband afterglow observations provide a probe of the density structure of the circumburst medium. In the spreading jet model, prompt and intense X-ray/UV radiation from the reverse shock may destroy and clear the d...Broadband afterglow observations provide a probe of the density structure of the circumburst medium. In the spreading jet model, prompt and intense X-ray/UV radiation from the reverse shock may destroy and clear the dust in the circumburst cloud out to about 30pc within the initial solid angle of the jet. As the jet expands significantly, optical radiation from the high-latitude part of the jet may suffer extinction by dust outside the initial solid angle, while radiation from the part within the initial solid angle can be observed without extinction. In previous studies, it is usually assumed that the extinction is complete. We calculate the extinction effect by taking the optical depth into account. Our numerical results show that a break appears in the light curve of optical afterglow but it extends over a factor of - 80 in time rather than a factor of - 10 in time for the case of strong dust extinction and a factor of - 60 in time for the case without dust extinction. These results may provide a way to judge how large the number density of the circumburst cloud is. Finally, we carry out a detailed modeling for the afterglow of GRB 000926. Our model can provide a good fit to the multi-color observations of this event.展开更多
The composition and structure of interstellar dust are important and complex for the study of the evolution of stars and the interstellar medium(ISM).However,there is a lack of corresponding experimental data and mode...The composition and structure of interstellar dust are important and complex for the study of the evolution of stars and the interstellar medium(ISM).However,there is a lack of corresponding experimental data and model theories.By theoretical calculations based on ab-initio method,we have predicted and geometry optimized the structures of Carbon-rich(C-rich)dusts,carbon(^(12)C),iron carbide(Fe C),silicon carbide(Si C),even silicon(^(28)Si),iron(^(56)Fe),and investigated the optical absorption coefficients and emission coefficients of these materials in 0D(zero-dimensional),1D,and 2D nanostructures.Comparing the nebular spectra of the supernovae(SN)with the coefficient of dust,we find that the optical absorption coefficient of the 2D^(12)C,^(28)Si,^(56)Fe,Si C and Fe C structure corresponds to the absorption peak displayed in the infrared band(5–8)μm of the spectrum at 7554 days after the SN1987A explosion.It also corresponds to the spectrum of 535 days after the explosion of SN2018bsz,when the wavelength was in the range of(0.2–0.8)and(3–10)μm.Nevertheless,2D Si C and Fe C correspond to the spectrum of 844 days after the explosion of SN2010jl,when the wavelength is within(0.08–10)μm.Therefore,Fe C and Si C may be the second type of dust in SN1987A corresponding to infrared band(5–8)μm of dust and may be in the ejecta of SN2010jl and SN2018bsz.The nano-scale C-rich dust size is~0.1 nm in SN2018bsz,which is 3 orders of magnitude lower than the value of 0.1μm.In addition,due to the ionization reaction in the supernova remnant(SNR),we also calculated the Infrared Radiation(IR)spectrum of dust cations.We find that the cation of the 2D layered(Si C)^(2+)has a higher IR spectrum than those of the cation(Si C)^(1+)and neutral(Si C)^(0+).展开更多
Correlation between gas and dust column density has been studied for the dark globule L1523. The 13CO(J=1→0) emission is used for tracing the gas, and the IR emissions, for tracing the dust constituent. In order to...Correlation between gas and dust column density has been studied for the dark globule L1523. The 13CO(J=1→0) emission is used for tracing the gas, and the IR emissions, for tracing the dust constituent. In order to match the beam resolution between the images, a beam de-convolution algorithm based on the Maximum Correlation Method (MCM) was applied on the Infrared Astronomical Satellite (IRAS) data. The morphology of 13CO column density map shows a close correlation to that of 100μm dust optical depth. The distribution of the optical depth at 100 μm follows that of gas column density more closely than does the flux map at either 60 or 100μm. The ratio of the 13CO column density to the 100μm optical depth shows a decreasing trend with increasing dust optical depth in the central part, indicating possible molecular gas condensation onto dust particles. The excessive decrease in the CO column density in the envelope may most probably be due to the photo-dissociation of CO molecules.展开更多
A multiwavelength study of a nearby dust lane early-type galaxy IC 5063 is presented. The objectives are to investigate dust extinction properties and the association of interstellar dust with other phases of ISM. The...A multiwavelength study of a nearby dust lane early-type galaxy IC 5063 is presented. The objectives are to investigate dust extinction properties and the association of interstellar dust with other phases of ISM. The color-index maps as well as the extinction maps derived from the analysis of deep CCD observations in optical passbands revealed a prominent dust lane along its optical major axis in the inner region. In addition, two more fainter and extended dust patterns are apparent in the color index map as well as extinction maps. These features are also evident in the smooth model subtracted residual maps. The extinction curve derived for this galaxy revealed that dust grains in it are identical to the canonical grains in the Milky Way with the dust grains little larger than the canonical grains. The total extinction measured in the V band extinction map enabled us to quantify the dust content of this galaxy to be equal to , an order of magnitude shorter than that estimated using the IRAS flux densities at 60 and 100 μm. A Multiphase ISM study revealed a surprising similarity in the morphologies of the Hα emitting ionized gas distribution and X-ray emitting gas. Systematic analysis of high resolution X-ray observations using Chandra telescope enabled us to detect 18 discrete X-ray sources within optical D25 region of IC 5063, out of which 17 sources were separated out as the low mass X-ray binaries and one as the high mass X-ray binary source in the X-ray color-color plot.展开更多
The studies of the glaciologists show that, since 30,000 years, the Earth receives every year approximately 40,000 tons of dust, dust with an average size about 200 microns. By determining of which volume these 40,000...The studies of the glaciologists show that, since 30,000 years, the Earth receives every year approximately 40,000 tons of dust, dust with an average size about 200 microns. By determining of which volume these 40,000 T come and by showing that the density of this volume is significant within the density of the milky way, I have tried to estimate the mass of dust contained in the Galaxy. To support that this density close to earth is representative, arguments are given: 1) the distribution of great dust is largely homogeneous in the galaxy (what does not exclude the existence of gas or dust clouds with different densities in the milky way);2) there would be a minimum size that I have calculated for micrometeorites in the solar environment, and so there would be a lack of the micrometeorites with a size between 5 and 50 microns. So the density would not be greater in the solar system. Next, a very simple rough calculation (as the one made by the observatory of Paris in 1910) allows estimating this mass near 4 times that of the dark matter. So, the interstellar dust with a large size (>200 μ) could it be the missing mass? A verification method is proposed to confirm or refute this hypothesis.展开更多
We fit various color–magnitude diagrams(CMDs) of the high-latitude Galactic globular clusters NGC 5024(M53),NGC 5053,NGC 5272(M3),NGC 5466,and NGC 7099(M30) by isochrones from the Dartmouth Stellar Evolution Database...We fit various color–magnitude diagrams(CMDs) of the high-latitude Galactic globular clusters NGC 5024(M53),NGC 5053,NGC 5272(M3),NGC 5466,and NGC 7099(M30) by isochrones from the Dartmouth Stellar Evolution Database and Bag of Stellar Tracks and Isochrones for α–enrichment [α/Fe] = +0.4.For the CMDs,we use data sets from Hubble Space Telescope,Gaia,and other sources utilizing,at least,25 photometric filters for each cluster.We obtain the following characteristics with their statistical uncertainties for NGC 5024,NGC 5053,NGC 5272,NGC 5466,and NGC 7099,respectively:metallicities [Fe/H] =-1.93 ± 0.02,-2.08 ± 0.03,-1.60 ± 0.02,-1.95 ± 0.02,and-2.07 ± 0.04 dex with their systematic uncertainty 0.1 dex;ages 13.00 ± 0.11,12.70 ± 0.11,11.63 ± 0.07,12.15 ± 0.11,and 12.80 ± 0.17 Gyr with their systematic uncertainty 0.8 Gyr;distances(systematic uncertainty added) 18.22 ± 0.06 ± 0.60,16.99 ± 0.06 ± 0.56,10.08 ± 0.04 ± 0.33,15.59 ±0.03 ± 0.51,and 8.29 ± 0.03 ± 0.27 kpc;reddenings E(B-V) = 0.023 ± 0.004,0.017 ± 0.004,0.023 ± 0.004,0.023 ± 0.003,and 0.045 ± 0.002 mag with their systematic uncertainty 0.01 mag;extinctions AV= 0.08 ± 0.01,0.06 ± 0.01,0.08 ± 0.01,0.08 ± 0.01,and 0.16 ± 0.01 mag with their systematic uncertainty 0.03 mag,which suggest the total Galactic extinction AV= 0.08 across the whole Galactic dust to extragalactic objects at the North Galactic Pole.The horizontal branch morphology difference of these clusters is explained by their different metallicity,age,mass-loss efficiency,and loss of low-mass members in the evolution of the core-collapse cluster NGC 7099 and loose clusters NGC 5053 and NGC 5466.展开更多
文摘We study the extinction properties of highly porous Ballistic Cluster-Cluster Aggregate dust aggregates in a wide range of complex refractive indices (1.4 ≤ n 〈 2.0, 0.001 ≤ k 〈 1.0) and wavelengths (0.11 μm 〈 A 〈 3.4 μm). An attempt has been made for the first time to investigate the correlation among extinction efficiency (Qext), composition of dust aggregates (n, k), wavelength of radiation (A) and size parameter of the monomers (x). If k is fixed at any value between 0.001 and 1.0, Qext increases with increase of n from 1.4 to 2.0. Qext and n are correlated via linear regression when the cluster size is small, whereas the correlation is quadratic at moderate and higher sizes of the cluster. This feature is observed at all wavelengths (ultraviolet to optical to infrared). We also find that the variation of Qext with n is very small when A is high. When n is fixed at any value between 1.4 and 2.0, it is observed that Qext and k are correlated via a polynomial regression equation (of degree 1, 2, 3 or 4), where the degree of the equation depends on the cluster size, n and A. The correlation is linear for small size and quadratic/cubic/quartic for moderate and higher sizes. We have also found that Qext and x are correlated via a polynomial regression (of degree 3, 4 or 5) for all values of n. The degree of regression is found to be n and k-dependent. The set of relations obtained from our work can be used to model interstellar extinction for dust aggregates in a wide range of wavelengths and complex refractive indices.
基金supported by the National Natural Science Foundation of China(NSFC)through grant Nos.12133002,U2031209 and 12203025Shandong Provincial Natural Science Foundation through project ZR2022QA064the CSST Milky Way and Nearby Galaxies Survey on Dust and Extinction Project CMS-CSST2021-A09。
文摘Dust extinction law is crucial to recover the intrinsic energy distribution of celestial objects and infer the characteristics of interstellar dust.Based on the traditional pair method,an improved pair method is proposed to model the dust extinguished spectral energy distribution(SED)of an individual star.Instead of the mathematically parameterizing extinction curves,the extinction curves in this work are directly from the silicate-graphite dust model,so that the dust extinction law can be obtained and the dust properties can be analyzed simultaneously.The ATLAS9 stellar model atmosphere is adopted for the intrinsic SEDs in this work,while the silicate-graphite dust model with a dust size distribution of dn da~a^(-a)exp(-a a_(c)),0.005<a<5μmfor each component is adopted for the model extinction curves.One typical extinction tracer in the dense region(V410 Anon9)and one in the diffuse region(Cyg OB2#12)of the Milky Way are chosen to test the reliability and the practicability of the improved pair method in different stellar environments.The results are consistent with their interstellar environments and are in agreement with the previous observations and studies,which prove that the improved pair method is effective and applicable in different stellar environments.In addition to the reliable extinction results,the derived parameters in the dust model can be used to analyze the dust properties,which cannot be achieved by other methods with the mathematical extinction models.With the improved pair method,the stellar parameters can also be inferred and the extinction law beyond the wavelengths of observed data can be predicted based on the dust model as well.
基金the Independent Innovation Project for Postgraduates of Central South University(No.160171008)the National Natural Science Foundation of China(project No.U2031204)the project of Xinjiang(No.2021D01C075)。
文摘Polycyclic aromatic hydrocarbons(PAHs),PANHs,and peptoids dust spectral calculations from the interstellar medium(ISM)are important for dust observations and theory.Our goal is to calculate the radiation spectrum of spherical PAHs dust clusters in a vacuum containing ionized and applied in the presence of an electric field.We propose a new simple computational model to calculate the size of three-dimensional spherical dust clusters formed by different initial dust structures.By the Vienna Ab-initio Simulation Package code,the density functional theory with the generalized approximation was used to calculate the electron density gradient and obtain the radiation spectrum of dust.When the radius of spherical dust clusters is~[0.009-0.042]μm,the dust radiation spectrum agrees well with the Z=0.02 mMMP stellar spectra,and the PAHs radiation spectrum of NGC 4676 at wavelengths of(0-5]μm and(5-10]μm,respectively.In the ionized state,the N-PAH,C_(10)H_(9)N,2(C_(4)H_(4))^(1+),and peptoids 4(CHON),(C_(8)H_(10)N_(2)O_(5))^(1+)dust clusters at 3.3μm,while the 2(C_(22)H_(21)N_(3)O_(2))^(1+),4(CHON)dust clusters at 5.2μm have obvious peaks.There is a characteristic of part of PAHs and peptoids clusters radiation at the nearinfrared wavelength of 2μm.However,especially after applying an electric field to the dust,the emission spectrum of the dust increases significantly in the radiation wavelength range[3-10]μm.Consequently,the dust clusters of PAHs,PANHs,and peptoids of the radius size~[0.009-0.042]μm are likely to exist in the ISM.
基金Supported by the National Natural Science Foundation of China.
文摘The massive star forming region S 233 IR is observed in the molecular lines CO J = 2–1, 3–2, NH<SUB>3</SUB> (1,1), (2,2) and the 870 um dust continuum. Four submillimeter continuum sources, labelled SMM 1–4, are revealed in the 870 um dust emission. The main core, SMM1, is found to be associated with a deeply embedded near infrared cluster in the northeast; while the weaker source SMM2 coincides with a more evolved cluster in the southwest. The best fit spectral energy distribution of SMM1 gives an emissivity of β = 1.6, and temperatures of 32 K and 92 K for the cold- and hot-dust components. An SMM1 core mass of 246 M<SUB>☉</SUB>, and a total mass of 445 M<SUB>☉</SUB> are estimated from the 870 um dust continuum emission. SMM1 is found to have a temperature gradient decreasing from inside out, indicative of the presence of interior heating sources. The total outflow gas mass as traced by the CO J = 3–2 emission is estimated to be 35 M<SUB>☉</SUB>. Low velocity outflows are also found in the NH<SUB>3</SUB> (1,1) emission. The non-thermal dominant NH<SUB>3</SUB> line width as well as the substantial core mass suggest that the SMM1 core is a ``turbulent, massive dense core', in the process of forming a group or a cluster of stars. The much higher star formation efficiency found in the southwest cluster supports the suggestion that this cluster is more evolved than the northeast one. Large near infrared photometric variations found in the source PCS-IR93, a previously found highly polarized nebulosity, indicate an underlying star showing the FU Orionis type of behavior.
基金the National Natural Science Foundation of China (No. 10273002).
文摘We map the dark molecular cloud core of L134 in the C^(18)O (J = 1 - 0)emission line using the PMO 13.7m telescope, and present a contour map of integrated intensity ofC^(18)O (J = 1 - 0) emission. The C^(18)O cloud is inside the distribution of extinction A_B, thevisual extinction of blue light, as well as inside the ^(13)CO cloud in the L134 region. Thedepletion factors in this C^(18)O cloud are generally greater than unity, which means there is gasdepletion onto dust. Since only a minimum A_B - 9.7 mag is available, and our observations measureboth undepleted and depleted regions along the line of sight, the depletion factors could verylikely be larger in the central core than the calculated value. So we conclude that depletion doesoccur in the bulk of the C^(18)O cloud through a comparison between the C^(18)O and blue extinctionmaps in the L134 region. There is no direct evidence as yet for star formation in L134, and so coreson the verge of collapse will not be visible in CO and other gas molecules.
基金supported by UGC, New Delhi under the major research project F.No. (36-240/2008-SR)the use of the High Performance Computing Facility developed under the DST- FIST scheme sanction No. SR/FST/PSI-145
文摘We present multi-wavelength imagery of the merger remnant galaxy NGC 1316 with an objective to study the dust content and its association with the other phases of the interstellar medium. Color-index maps as well as extinction maps derived for this galaxy reveal an intricate and complex dust morphology in NGC 1316, i.e. there is a prominent lane in the inner part, while at about 6-7 kpc it apparently takes the form of an arc-like pattern extending along the northeast direction. In addition to this, several other dust clumps and knots are also evident in this galaxy. The dust emission mapped using Spitzer data at 8 μm indicates even more complex morphological structures of the dust in NGC 1316. The extinction curve derived over the optical to near-IR bands closely follows the standard Galactic curve, suggesting similar properties of the dust grains. The dust content of NGC 1316, estimated from optical extinction, is ,- 2.13 × 10^5 M⊙. This is a lower limit compared to that estimated using the IRAS flux densities of ,-5.17× 10^6 M⊙ and the flux densities at 24, 70 and 160 p.m from MIPS ,-3.2× 10^7 M⊙. High resolution Chandra observations of this merger remnant system have provided an unprecedented view of the complex nature exhibited by the distribution of hot gas in NGC 1316, which closely matches the morphology of ionized gas and to some extent also the dust. X-ray color-color plots for the resolved sources within the optical D25 extent of NGC 1316 have enabled us to separate them into different classes.
文摘The observed linear polarization data of comet Hyakutake are studied at wavelengths λ=0.365 μm,λ=0.485 μm and 0.684μm through simulations using Ballistic Particle-Cluster Aggregate and Ballistic Cluster-Cluster Aggregate aggregates of 128 spherical monomers.We first found that the size parameter of the monomer,x ~ 1.56-1.70,turned out to be the most suitable which provides the best fits to the observed dust scattering properties at three wavelengths:λ=0.365 μm,0.485μm and 0.684μm.Thus,the effective radius of the aggregate (r) lies in the range 0.45 μm ≤ r ≤ 0.49 μm at λ=0.365 μm;0.60 μm ≤ r ≤ 0.66 μm at λ=0.485 μm and 0.88 μm ≤ r ≤ 0.94 μm at λ=0.684 μm.Now using superposition T-MATRIX code and the power-law size distribution,n(r) ~ r-3,the best-fitting values of complex refractive indices are calculated for the observed polarization data at the above three wavelengths.The best-fitting complex refractive indices (n,k) are found to be (1.745,0.095) at λ=0.365 μm,(1.743,0.100) at λ=0.485 μm and (1.695,0.100) at λ=0.684 μm.The refractive indices derived from the present analysis correspond to a mixture of both silicates and organics,which are in good agreement with the in situ measurement of comets by different spacecraft.
基金Supported by the National Natural Science Foundation of China
文摘Broadband afterglow observations provide a probe of the density structure of the circumburst medium. In the spreading jet model, prompt and intense X-ray/UV radiation from the reverse shock may destroy and clear the dust in the circumburst cloud out to about 30pc within the initial solid angle of the jet. As the jet expands significantly, optical radiation from the high-latitude part of the jet may suffer extinction by dust outside the initial solid angle, while radiation from the part within the initial solid angle can be observed without extinction. In previous studies, it is usually assumed that the extinction is complete. We calculate the extinction effect by taking the optical depth into account. Our numerical results show that a break appears in the light curve of optical afterglow but it extends over a factor of - 80 in time rather than a factor of - 10 in time for the case of strong dust extinction and a factor of - 60 in time for the case without dust extinction. These results may provide a way to judge how large the number density of the circumburst cloud is. Finally, we carry out a detailed modeling for the afterglow of GRB 000926. Our model can provide a good fit to the multi-color observations of this event.
基金Supported by the National Natural Science Foundation of China。
文摘The composition and structure of interstellar dust are important and complex for the study of the evolution of stars and the interstellar medium(ISM).However,there is a lack of corresponding experimental data and model theories.By theoretical calculations based on ab-initio method,we have predicted and geometry optimized the structures of Carbon-rich(C-rich)dusts,carbon(^(12)C),iron carbide(Fe C),silicon carbide(Si C),even silicon(^(28)Si),iron(^(56)Fe),and investigated the optical absorption coefficients and emission coefficients of these materials in 0D(zero-dimensional),1D,and 2D nanostructures.Comparing the nebular spectra of the supernovae(SN)with the coefficient of dust,we find that the optical absorption coefficient of the 2D^(12)C,^(28)Si,^(56)Fe,Si C and Fe C structure corresponds to the absorption peak displayed in the infrared band(5–8)μm of the spectrum at 7554 days after the SN1987A explosion.It also corresponds to the spectrum of 535 days after the explosion of SN2018bsz,when the wavelength was in the range of(0.2–0.8)and(3–10)μm.Nevertheless,2D Si C and Fe C correspond to the spectrum of 844 days after the explosion of SN2010jl,when the wavelength is within(0.08–10)μm.Therefore,Fe C and Si C may be the second type of dust in SN1987A corresponding to infrared band(5–8)μm of dust and may be in the ejecta of SN2010jl and SN2018bsz.The nano-scale C-rich dust size is~0.1 nm in SN2018bsz,which is 3 orders of magnitude lower than the value of 0.1μm.In addition,due to the ionization reaction in the supernova remnant(SNR),we also calculated the Infrared Radiation(IR)spectrum of dust cations.We find that the cation of the 2D layered(Si C)^(2+)has a higher IR spectrum than those of the cation(Si C)^(1+)and neutral(Si C)^(0+).
文摘Correlation between gas and dust column density has been studied for the dark globule L1523. The 13CO(J=1→0) emission is used for tracing the gas, and the IR emissions, for tracing the dust constituent. In order to match the beam resolution between the images, a beam de-convolution algorithm based on the Maximum Correlation Method (MCM) was applied on the Infrared Astronomical Satellite (IRAS) data. The morphology of 13CO column density map shows a close correlation to that of 100μm dust optical depth. The distribution of the optical depth at 100 μm follows that of gas column density more closely than does the flux map at either 60 or 100μm. The ratio of the 13CO column density to the 100μm optical depth shows a decreasing trend with increasing dust optical depth in the central part, indicating possible molecular gas condensation onto dust particles. The excessive decrease in the CO column density in the envelope may most probably be due to the photo-dissociation of CO molecules.
文摘A multiwavelength study of a nearby dust lane early-type galaxy IC 5063 is presented. The objectives are to investigate dust extinction properties and the association of interstellar dust with other phases of ISM. The color-index maps as well as the extinction maps derived from the analysis of deep CCD observations in optical passbands revealed a prominent dust lane along its optical major axis in the inner region. In addition, two more fainter and extended dust patterns are apparent in the color index map as well as extinction maps. These features are also evident in the smooth model subtracted residual maps. The extinction curve derived for this galaxy revealed that dust grains in it are identical to the canonical grains in the Milky Way with the dust grains little larger than the canonical grains. The total extinction measured in the V band extinction map enabled us to quantify the dust content of this galaxy to be equal to , an order of magnitude shorter than that estimated using the IRAS flux densities at 60 and 100 μm. A Multiphase ISM study revealed a surprising similarity in the morphologies of the Hα emitting ionized gas distribution and X-ray emitting gas. Systematic analysis of high resolution X-ray observations using Chandra telescope enabled us to detect 18 discrete X-ray sources within optical D25 region of IC 5063, out of which 17 sources were separated out as the low mass X-ray binaries and one as the high mass X-ray binary source in the X-ray color-color plot.
文摘The studies of the glaciologists show that, since 30,000 years, the Earth receives every year approximately 40,000 tons of dust, dust with an average size about 200 microns. By determining of which volume these 40,000 T come and by showing that the density of this volume is significant within the density of the milky way, I have tried to estimate the mass of dust contained in the Galaxy. To support that this density close to earth is representative, arguments are given: 1) the distribution of great dust is largely homogeneous in the galaxy (what does not exclude the existence of gas or dust clouds with different densities in the milky way);2) there would be a minimum size that I have calculated for micrometeorites in the solar environment, and so there would be a lack of the micrometeorites with a size between 5 and 50 microns. So the density would not be greater in the solar system. Next, a very simple rough calculation (as the one made by the observatory of Paris in 1910) allows estimating this mass near 4 times that of the dark matter. So, the interstellar dust with a large size (>200 μ) could it be the missing mass? A verification method is proposed to confirm or refute this hypothesis.
基金financial support from the Russian Science Foundation (grant No.20-72-10052)。
文摘We fit various color–magnitude diagrams(CMDs) of the high-latitude Galactic globular clusters NGC 5024(M53),NGC 5053,NGC 5272(M3),NGC 5466,and NGC 7099(M30) by isochrones from the Dartmouth Stellar Evolution Database and Bag of Stellar Tracks and Isochrones for α–enrichment [α/Fe] = +0.4.For the CMDs,we use data sets from Hubble Space Telescope,Gaia,and other sources utilizing,at least,25 photometric filters for each cluster.We obtain the following characteristics with their statistical uncertainties for NGC 5024,NGC 5053,NGC 5272,NGC 5466,and NGC 7099,respectively:metallicities [Fe/H] =-1.93 ± 0.02,-2.08 ± 0.03,-1.60 ± 0.02,-1.95 ± 0.02,and-2.07 ± 0.04 dex with their systematic uncertainty 0.1 dex;ages 13.00 ± 0.11,12.70 ± 0.11,11.63 ± 0.07,12.15 ± 0.11,and 12.80 ± 0.17 Gyr with their systematic uncertainty 0.8 Gyr;distances(systematic uncertainty added) 18.22 ± 0.06 ± 0.60,16.99 ± 0.06 ± 0.56,10.08 ± 0.04 ± 0.33,15.59 ±0.03 ± 0.51,and 8.29 ± 0.03 ± 0.27 kpc;reddenings E(B-V) = 0.023 ± 0.004,0.017 ± 0.004,0.023 ± 0.004,0.023 ± 0.003,and 0.045 ± 0.002 mag with their systematic uncertainty 0.01 mag;extinctions AV= 0.08 ± 0.01,0.06 ± 0.01,0.08 ± 0.01,0.08 ± 0.01,and 0.16 ± 0.01 mag with their systematic uncertainty 0.03 mag,which suggest the total Galactic extinction AV= 0.08 across the whole Galactic dust to extragalactic objects at the North Galactic Pole.The horizontal branch morphology difference of these clusters is explained by their different metallicity,age,mass-loss efficiency,and loss of low-mass members in the evolution of the core-collapse cluster NGC 7099 and loose clusters NGC 5053 and NGC 5466.