The far-field microdynamic disturbance caused by the excavation of deep mineral resources and underground engineering can induce surrounding rock damage in high-stress conditions and even lead to disasters.However,the...The far-field microdynamic disturbance caused by the excavation of deep mineral resources and underground engineering can induce surrounding rock damage in high-stress conditions and even lead to disasters.However,the mechanical properties and damage/fracture evolution mechanisms of deep rock induced by microdynamic disturbance under three-dimensional stress states are unclear.Therefore,a true triaxial multilevel disturbance test method is proposed,which can completely simulate natural geostress,excavation stress redistribution(such as stress unloading,concentration and rotation),and subsequently the microdynamic disturbance triggering damaged rock failure.Based on a dynamic true triaxial test platform,true triaxial microdynamic disturbance tests under different frequency and amplitudes were carried out on monzogabbro.The results show that increasing amplitude or decreasing frequency diminishes the failure strength of monzogabbro.Deformation modulus gradually decreases during disturbance failure.As frequency and amplitude increase,the degradation rate of deformation modulus decreases slightly,disturbance dissipated energy increases significantly,and disturbance deformation anisotropy strengthens obviously.A damage model has been proposed to quantitatively characterize the disturbance-induced damage evolution at different frequency and amplitude under true triaxial stress.Before disturbance failure,the micro-tensile crack mechanism is dominant,and the micro-shear crack mechanism increases significantly at failure.With the increase of amplitude and frequency,the micro-shear crack mechanism increases.When approaching disturbance failure,the acoustic emission fractal dimension changes from a stable value to local large oscillation,and finally increases sharply to a high value at failure.Finally,the disturbance-induced failure mechanism of surrounding rock in deep engineering is clearly elucidated.展开更多
Interfacial water molecules are the most important participants in the hydrogen evolution reaction(HER).Hence,understanding the behavior and role that interfacial water plays will ultimately reveal the HER mechanism.U...Interfacial water molecules are the most important participants in the hydrogen evolution reaction(HER).Hence,understanding the behavior and role that interfacial water plays will ultimately reveal the HER mechanism.Unfortunately,investigating interfacial water is extremely challenging owing to the interference caused by bulk water molecules and complexity of the interfacial environment.Here,the behaviors of interfacial water in different cationic electrolytes on Pd surfaces were investigated by the electrochemistry,in situ core-shell nanostructure enhanced Raman spectroscopy and theoretical simulation techniques.Direct spectral evidence reveals a red shift in the frequency and a decrease in the intensity of interfacial water as the potential is shifted in the positively direction.When comparing the different cation electrolyte systems at a given potential,the frequency of the interfacial water peak increases in the specified order:Li+<Na^(+)<K^(+)<Ca^(2+)<Sr^(2+).The structure of interfacial water was optimized by adjusting the radius,valence,and concentration of cation to form the two-H down structure.This unique interfacial water structure will improve the charge transfer efficiency between the water and electrode further enhancing the HER performance.Therefore,local cation tuning strategies can be used to improve the HER performance by optimizing the interfacial water structure.展开更多
The Inner Mongolia mining area in western China are characterized by the development of numerous penetrating fissures,resulting in severe land damage.It is significant to reveal the underlying evolution mechanism and ...The Inner Mongolia mining area in western China are characterized by the development of numerous penetrating fissures,resulting in severe land damage.It is significant to reveal the underlying evolution mechanism and identify treatment timing for restoring the ecological environment.The Guanbanwusu mining subsidence area in Inner Mongolia,China was selected as the research case for this study.The evolution mechanism of different penetrating fissures was revealed by field measurement,physical simulation and theoretical analysis.The treatment timing prediction model for the mining subsidence area was established based on the enhanced Weibull time function.The results show that the ground fissures are mainly step-type and collapse-type fissures.The breaking form of overlying strata determines their vertical opening and horizontal dislocation.The high mining intensity in the western mining area results in a shortened period of dynamic fissure expansion and reduced closure degree.The damage extent of the overlying strata exhibits zoning characteristics both vertically and horizontally.The relative standard deviation of the prediction model is only 3.7%.Concurrently,the prediction model is employed to determine the optimal timing for treatment in the study area,estimated to be 259 days.Subsequently,once this threshold is reached,the study area undergoes treatment and restoration of its e cological environment.This study addresses the knowledge gap in this field by highlighting the interconnectedness between rock strata structure and evolution mechanism of penetrating fissures,thereby providing a method for determining the treatment timing in mining subsidence areas.展开更多
Aluminium alloy is one of the earliest and most widely used superplastic materials.The objective of this work is to review the scientific advances in superplastic Al alloys.Particularly,the emphasis is placed on the m...Aluminium alloy is one of the earliest and most widely used superplastic materials.The objective of this work is to review the scientific advances in superplastic Al alloys.Particularly,the emphasis is placed on the microstructural evolution and deformation mechanisms of Al alloys during superplastic deformation.The evolution of grain structure,texture,secondary phase,and cavities during superplastic flow in typical superplastic Al alloys is discussed in detail.The quantitative evaluation of different deformation mechanisms based on the focus ion beam(FIB)-assisted surface study provides new insights into the superplasticity of Al alloys.The main features,such as grain boundary sliding,intragranular dislocation slip,and diffusion creep can be observed intuitively and analyzed quantitatively.This study provides some reference for the research of superplastic deformation mechanism and the development of superplastic Al alloys.展开更多
Anew study of a 7–8-million-year-old extinct fossil ape from China called Lufengpithecus offers new insights into the evolution of human bipedalism.The study,published in The Innovation,was conducted by a team from t...Anew study of a 7–8-million-year-old extinct fossil ape from China called Lufengpithecus offers new insights into the evolution of human bipedalism.The study,published in The Innovation,was conducted by a team from the Institute of Vertebrate Paleontology and Paleoanthropology(IVPP)of the Chinese Academy of Sciences,the Yunnan Institute of Cultural Relics and Archaeology(YICRA),and New York University(NYU).展开更多
为从系统整体角度完成对起落架收放系统的风险辨识和影响分析,将系统理论过程分析(Systematic Theory Process Analysis,STPA)与决策实验室分析-解释结构模型(Decision Making Trial and Evaluation Laboratory Interpretive Structural...为从系统整体角度完成对起落架收放系统的风险辨识和影响分析,将系统理论过程分析(Systematic Theory Process Analysis,STPA)与决策实验室分析-解释结构模型(Decision Making Trial and Evaluation Laboratory Interpretive Structural Modeling,DEMATEL-ISM)相结合来开展分析。首先,定义事故和系统级危险,以民机进近阶段放下起落架为例,运用STPA完成对风险因素的系统化辨识;其次,基于最大平均熵减(Maximum Mean De-entropy,MMDE)算法帮助DEMATEL-ISM模型确定阈值,完成对风险因素影响的重要性分析并识别可能引发系统级危险的风险传递路径,据此挖掘关键致因场景,以给出风险预防建议。结果显示:线路性能退化或失效、位置作动控制组件(Position Action Control Unit,PACU)核心处理器故障为关键原因因素,收放作动筒作动异常、机组成员操作不当、起落架指示灯显示异常、起落架液压选择阀作动异常、PACU信息接收有误为关键结果因素,这些因素均涉及多条可能引发系统级危险的风险传递路径,应予以重点控制。展开更多
基金the financial support from the National Natural Science Foundation of China(No.52109119)the Guangxi Natural Science Foundation(No.2021GXNSFBA075030)+2 种基金the Guangxi Science and Technology Project(No.Guike AD20325002)the Chinese Postdoctoral Science Fund Project(No.2022M723408)the Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin(China Institute of Water Resources and Hydropower Research)(No.IWHR-SKL-202202)。
文摘The far-field microdynamic disturbance caused by the excavation of deep mineral resources and underground engineering can induce surrounding rock damage in high-stress conditions and even lead to disasters.However,the mechanical properties and damage/fracture evolution mechanisms of deep rock induced by microdynamic disturbance under three-dimensional stress states are unclear.Therefore,a true triaxial multilevel disturbance test method is proposed,which can completely simulate natural geostress,excavation stress redistribution(such as stress unloading,concentration and rotation),and subsequently the microdynamic disturbance triggering damaged rock failure.Based on a dynamic true triaxial test platform,true triaxial microdynamic disturbance tests under different frequency and amplitudes were carried out on monzogabbro.The results show that increasing amplitude or decreasing frequency diminishes the failure strength of monzogabbro.Deformation modulus gradually decreases during disturbance failure.As frequency and amplitude increase,the degradation rate of deformation modulus decreases slightly,disturbance dissipated energy increases significantly,and disturbance deformation anisotropy strengthens obviously.A damage model has been proposed to quantitatively characterize the disturbance-induced damage evolution at different frequency and amplitude under true triaxial stress.Before disturbance failure,the micro-tensile crack mechanism is dominant,and the micro-shear crack mechanism increases significantly at failure.With the increase of amplitude and frequency,the micro-shear crack mechanism increases.When approaching disturbance failure,the acoustic emission fractal dimension changes from a stable value to local large oscillation,and finally increases sharply to a high value at failure.Finally,the disturbance-induced failure mechanism of surrounding rock in deep engineering is clearly elucidated.
基金the National Key Research and Development Program of China(2019YFA0705400)the National Natural Science Foundation of China(T2293692,21925404,22021001,21991151,and 22002036)+1 种基金the Natural Science Foundation of Fujian Province of China(2021J06001)the National Natural Science Foundation of Henan province(232300421081).
文摘Interfacial water molecules are the most important participants in the hydrogen evolution reaction(HER).Hence,understanding the behavior and role that interfacial water plays will ultimately reveal the HER mechanism.Unfortunately,investigating interfacial water is extremely challenging owing to the interference caused by bulk water molecules and complexity of the interfacial environment.Here,the behaviors of interfacial water in different cationic electrolytes on Pd surfaces were investigated by the electrochemistry,in situ core-shell nanostructure enhanced Raman spectroscopy and theoretical simulation techniques.Direct spectral evidence reveals a red shift in the frequency and a decrease in the intensity of interfacial water as the potential is shifted in the positively direction.When comparing the different cation electrolyte systems at a given potential,the frequency of the interfacial water peak increases in the specified order:Li+<Na^(+)<K^(+)<Ca^(2+)<Sr^(2+).The structure of interfacial water was optimized by adjusting the radius,valence,and concentration of cation to form the two-H down structure.This unique interfacial water structure will improve the charge transfer efficiency between the water and electrode further enhancing the HER performance.Therefore,local cation tuning strategies can be used to improve the HER performance by optimizing the interfacial water structure.
基金supported by the Major Program of the National Natural Science Foundation of China(No.52394191)the Fundamental Research Funds for China University of Mining and Technology(Beijing):Doctoral Top-notch Innovative Talents Cultivation Fund(No.BBJ2023018,BBJ2023023)the Open Fund of State Key Laboratory of Water Resource Protection and Utilization in Coal Mining(No.GJNY-20-113-20).
文摘The Inner Mongolia mining area in western China are characterized by the development of numerous penetrating fissures,resulting in severe land damage.It is significant to reveal the underlying evolution mechanism and identify treatment timing for restoring the ecological environment.The Guanbanwusu mining subsidence area in Inner Mongolia,China was selected as the research case for this study.The evolution mechanism of different penetrating fissures was revealed by field measurement,physical simulation and theoretical analysis.The treatment timing prediction model for the mining subsidence area was established based on the enhanced Weibull time function.The results show that the ground fissures are mainly step-type and collapse-type fissures.The breaking form of overlying strata determines their vertical opening and horizontal dislocation.The high mining intensity in the western mining area results in a shortened period of dynamic fissure expansion and reduced closure degree.The damage extent of the overlying strata exhibits zoning characteristics both vertically and horizontally.The relative standard deviation of the prediction model is only 3.7%.Concurrently,the prediction model is employed to determine the optimal timing for treatment in the study area,estimated to be 259 days.Subsequently,once this threshold is reached,the study area undergoes treatment and restoration of its e cological environment.This study addresses the knowledge gap in this field by highlighting the interconnectedness between rock strata structure and evolution mechanism of penetrating fissures,thereby providing a method for determining the treatment timing in mining subsidence areas.
文摘Aluminium alloy is one of the earliest and most widely used superplastic materials.The objective of this work is to review the scientific advances in superplastic Al alloys.Particularly,the emphasis is placed on the microstructural evolution and deformation mechanisms of Al alloys during superplastic deformation.The evolution of grain structure,texture,secondary phase,and cavities during superplastic flow in typical superplastic Al alloys is discussed in detail.The quantitative evaluation of different deformation mechanisms based on the focus ion beam(FIB)-assisted surface study provides new insights into the superplasticity of Al alloys.The main features,such as grain boundary sliding,intragranular dislocation slip,and diffusion creep can be observed intuitively and analyzed quantitatively.This study provides some reference for the research of superplastic deformation mechanism and the development of superplastic Al alloys.
文摘Anew study of a 7–8-million-year-old extinct fossil ape from China called Lufengpithecus offers new insights into the evolution of human bipedalism.The study,published in The Innovation,was conducted by a team from the Institute of Vertebrate Paleontology and Paleoanthropology(IVPP)of the Chinese Academy of Sciences,the Yunnan Institute of Cultural Relics and Archaeology(YICRA),and New York University(NYU).
文摘为从系统整体角度完成对起落架收放系统的风险辨识和影响分析,将系统理论过程分析(Systematic Theory Process Analysis,STPA)与决策实验室分析-解释结构模型(Decision Making Trial and Evaluation Laboratory Interpretive Structural Modeling,DEMATEL-ISM)相结合来开展分析。首先,定义事故和系统级危险,以民机进近阶段放下起落架为例,运用STPA完成对风险因素的系统化辨识;其次,基于最大平均熵减(Maximum Mean De-entropy,MMDE)算法帮助DEMATEL-ISM模型确定阈值,完成对风险因素影响的重要性分析并识别可能引发系统级危险的风险传递路径,据此挖掘关键致因场景,以给出风险预防建议。结果显示:线路性能退化或失效、位置作动控制组件(Position Action Control Unit,PACU)核心处理器故障为关键原因因素,收放作动筒作动异常、机组成员操作不当、起落架指示灯显示异常、起落架液压选择阀作动异常、PACU信息接收有误为关键结果因素,这些因素均涉及多条可能引发系统级危险的风险传递路径,应予以重点控制。