The observation of oxygen(O)-and nitrogen(N)-bearing molecules gives an idea about the complex prebiotic chemistry in the interstellar medium.Recent millimeter and submillimeter wavelength observations have shown the ...The observation of oxygen(O)-and nitrogen(N)-bearing molecules gives an idea about the complex prebiotic chemistry in the interstellar medium.Recent millimeter and submillimeter wavelength observations have shown the presence of complex O-and N-bearing molecules in the star formation regions.So,the investigation of those molecules is crucial to understanding the chemical complexity in the star-forming regions.In this article,we present the identification of the rotational emission lines of N-bearing molecules ethyl cyanide(C_(2)H_(5)CN)and cyanoacetylene(HC_(3)N),and O-bearing molecule methyl formate(CH_(3)OCHO)toward high-mass protostar IRAS18089–1732 using the Atacama Compact Array.We also detected the emission lines of both the N-and O-bearing molecule formamide(NH_(2)CHO)in the envelope of IRAS 18089–1732.We have detected the v=0 and 1 state rotational emission lines of CH_(3)OCHO.We also detected the two vibrationally excited states of HC_(3)N(v7=1 and v7=2).The estimated fractional abundances of C_(2)H_(5)CN,HC_(3)N(v7=1),HC_(3)N(v7=2),and NH_(2)CHO toward IRAS 18089–1732 are(1.40±0.5)×10^(-10),(7.5±0.7)×10^(-11),(3.1±0.4)×10^(-11),and(6.25±0.82)×10^(-11)respectively.Similarly,the estimated fractional abundances of CH_(3)OCHO(v=0)and CH_(3)OCHO(v=1)are(1.90±0.9)×10^(-9)and(8.90±0.8)×10^(-10),respectively.We also created the integrated emission maps of the detected molecules,and the observed molecules may have originated from the extended envelope of the protostar.We show that C_(2)H_(5)CNand HC_(3)N are most probably formed via the subsequential hydrogenation of the CH_(2)CHCNand the reaction between C_(2)H_(2)and CN on the grain surface of IRAS 18089–1732.We found that NH_(2)CHO is probably produced due to the reaction between NH_(2)and H_(2)CO in the gas phase.Similarly,CH_(3)OCHO is possibly created via the reaction between radical CH_(3)O and radical HCO on the grain surface of IRAS 18089–1732.展开更多
We have carried out observations of 12CO J=2-1 and 12CO J=3-2 to- ward the high-mass protostellar candidate IRAS 20188+3928. Compared with previ- ous observations, the 12CO J=2-1 and 12CO J=3-2 lines both have asymme...We have carried out observations of 12CO J=2-1 and 12CO J=3-2 to- ward the high-mass protostellar candidate IRAS 20188+3928. Compared with previ- ous observations, the 12CO J=2-1 and 12CO J=3-2 lines both have asymmetric pro- files with an absorption dip. The velocity of the absorption dip is ~ 1.0 km s-1. The spectral shape may be caused by rotation. The velocity-integrated intensity map and position-velocity diagram of the 12CO J=2-1 line present an obvious bipolar com- ponent, further verifying that this region has an outflow motion. This region is also associated with an HII region, an IRAS source, and an H20 maser. The H20 maser has the velocity of 1.1 km s-1. Compared with the components of the outflow, we find that the H20 maser is not associated with the outflow. Using the large velocity gradi- ent model, we concluded that possible averaged gas densities of the blueshifted lobe and redshifted lobe are 1.0x 105 cm-3 and 2.0x 104 cm-a, while kinetic temperatures are 26.9 K and 52.9 K, respectively. Additionally, the outflow has a higher integrated intensity ratio (Ico J=3 - 2/Ico J=2 - 1).展开更多
Hydroxy acetone(CH3 COCH2 OH)is one of the smallest molecules that contain both hydroxyl and carbonyl group on neighboring carbon atoms.This steric configuration is characteristic of saccharides and determines their b...Hydroxy acetone(CH3 COCH2 OH)is one of the smallest molecules that contain both hydroxyl and carbonyl group on neighboring carbon atoms.This steric configuration is characteristic of saccharides and determines their biochemical activity.The attempt to search for hydroxy acetone toward the massive star formation region Sagittarius B2(N)was unsuccessful.Here we report the first detection of CH3 COCH2 OH in the solar-type protostar IRAS 16293-2422 B,using the Atacama Large Millimeter Array science verification data at Band 4.In a total of 11 unblended transitions of CH3 COCH2 OH with upper level energies ranging from 86 to 246 K are identified.From our local thermodynamic equilibrium analysis,we derived that the rotational temperature of CH3 COCH2 OH is 160±21 K and the column density is(1.2±1.0)×10^16 cm^-2,which results in a fractional abundance of 7×10^-10 with respect to molecular hydrogen.In this work,we present the identification of CH3 COCH2 OH in IRAS 16293-2422 B and propose a simple formation mechanism.The unambiguous identification of hydroxyacetone may provide the basis for future study of the origin and evolution of saccharides in the interstellar medium.展开更多
Near-infrared images and K-band spectroscopy of the massive star-formingregion IRAS 23151+5912 are presented. The JHK′ images reveal an embedded infrared clusterassociated with infrared nebula, and the H_2 (2.12 μm)...Near-infrared images and K-band spectroscopy of the massive star-formingregion IRAS 23151+5912 are presented. The JHK′ images reveal an embedded infrared clusterassociated with infrared nebula, and the H_2 (2.12 μm) narrowband image provides for the first timeevidence of outflow activity associated with the cluster. That the cluster is young can be shown bythe high percentage of infrared excess sources and the outflow activity. We suggest an age of thecluster of ~ 10~6 yr. Eight young stars are found in the bright nebular core around IRAS23151+5912. By the color-magnitude diagrams of the cluster, we found five high-mass YSOs and fourintermediate-mass YSOs in the cluster. Eight H_2 emission features are discovered in the region witha scattered and non-axisymmetric distribution, indicating the existence of multiple outflows drivenby the cluster. Diffuse H_2 emission detected to the north and to the west of the cluster mayresult from UV leakage of the cluster. Brγ, H_2, and CIV emission lines are found in the K-bandspectrum of the brightest source, NIRS 19, indicating the presence of envelope, stellar wind, andshock in the circumstellar environment. We have estimated an O7-O9 spectral type for the centralmassive YSO (20 ~ 30 solar mass), with an age of less than 1 x 10~6 yr.展开更多
Based on observations of 12CO (J=2–1), we select targets from archived Infrared Astronomical Satellite (IRAS) data of IRAS 02459+6029 and IRAS 22528+5936 as samples of cloud-cloud collision, according to the criteria...Based on observations of 12CO (J=2–1), we select targets from archived Infrared Astronomical Satellite (IRAS) data of IRAS 02459+6029 and IRAS 22528+5936 as samples of cloud-cloud collision, according to the criteria given by Vallee. Then we use the Midcourse Space Experiment (MSX) A band (8.28 μm) images and the NRAO VLA Sky Survey (NVSS) (1.4 GHz) continuum images to investigate the association between molecular clouds traced by the CO contour maps. The distribution of dust and ionized hydrogen shows an obvious association with the CO contour maps toward IRAS 02459+6029. However, in the possible collision region of IRAS 22528+5936, NVSS continuum radiation is not detected and the MSX sources are merely associated with the central star. The velocity fields of the two regions indicate the direction of the pressure and interaction. In addition, we have identified candidates of young stellar objects (YSOs) by using data from the Two Micron All Sky Survey (2MASS) in JHK bands expressed in a color-color diagram. The distribution of YSOs shows that the possible collision region is denser than other regions. All the evidence suggests that IRAS 02459+6029 could be an example of cloud-cloud collision, and that IRAS 22528+5936 could be two separate non-colliding clouds.展开更多
Warm absorption is a common phenomenon in Seyfert 1 s and quasars, but is rare in Seyfert 2s. We report the detection of warm absorbers with high energy resolution in the Seyfert 2 galaxy IRAS 18325-5926 for the first...Warm absorption is a common phenomenon in Seyfert 1 s and quasars, but is rare in Seyfert 2s. We report the detection of warm absorbers with high energy resolution in the Seyfert 2 galaxy IRAS 18325-5926 for the first time with Chandra HETGS spectra. An intrinsic absorbing line system with an outflow velocity - 400 km s^-1 was found, which is contributed by two warm absorbers with FWHM of 570 km s^-1 and 1360 km s^-1, respectively. The two absorbers were adjacent, and moving transversely across our line of sight. We constrained the distance between the center and the absorbers to be a small value, suggesting that the absorbers may originate from the highly ionized accretion disk wind ejected five years ago. The perspective of this type 2 Seyfert provides the best situation in which to investigate the vertical part of the funnel-like outflows. Another weak absorbing line system with zero redshift was also detected, which could be due to Galactic absorption with very high temperature or an intrinsic outflow with a very high velocity - 6000 km s^-1.展开更多
We present a stellar population synthesis study of a type II luminous infrared galaxy, IRAS F21013-0739. Optical images show clear characteristics of a merger remnant. The H-band absolute magnitude is MH = -25.1, whic...We present a stellar population synthesis study of a type II luminous infrared galaxy, IRAS F21013-0739. Optical images show clear characteristics of a merger remnant. The H-band absolute magnitude is MH = -25.1, which is -2 times as luminous as L* galaxies. Stellar populations are obtained through the stellar synthesis code STARLIGHT. We find that it experienced a recent starburst (SB) phase - 100 Myr ago. By reconstructing the ultraviolet-to-optical spectrum, and adopting Calzetti et al. and Leitherer et al.'s extinction curves, we estimate the past infrared (IR) luminosities of the host galaxy and find it may have experienced an ultraluminous infrared galaxy phase which lasted for about 100 Myr. Its i-band absolute magnitude is Mi = -22.463, and its spectral type shows type 2 active galactic nucleus (AGN) characteristics. The mass of the supermassive black-hole is estimated to be MBH = 1.6 × 107 M⊙ (lower- limit). The Eddington ratio Lbol/LEdd is 0.15, which is typical of Palomar-Green (PG) quasars. Both the nuclear SB and AGN contribute to the present IR luminosity budget, and the SB contributes -67%. On the diagram of IR color versus IR/opfical excess, it is located between IR quasars and PG quasars. These results indicate that IRAS F21013-0739 has probably evolved from a ULIRG, and it can possibly evolve into an AGN.展开更多
We present multi-wavelength imagery of the merger remnant galaxy NGC 1316 with an objective to study the dust content and its association with the other phases of the interstellar medium. Color-index maps as well as e...We present multi-wavelength imagery of the merger remnant galaxy NGC 1316 with an objective to study the dust content and its association with the other phases of the interstellar medium. Color-index maps as well as extinction maps derived for this galaxy reveal an intricate and complex dust morphology in NGC 1316, i.e. there is a prominent lane in the inner part, while at about 6-7 kpc it apparently takes the form of an arc-like pattern extending along the northeast direction. In addition to this, several other dust clumps and knots are also evident in this galaxy. The dust emission mapped using Spitzer data at 8 μm indicates even more complex morphological structures of the dust in NGC 1316. The extinction curve derived over the optical to near-IR bands closely follows the standard Galactic curve, suggesting similar properties of the dust grains. The dust content of NGC 1316, estimated from optical extinction, is ,- 2.13 × 10^5 M⊙. This is a lower limit compared to that estimated using the IRAS flux densities of ,-5.17× 10^6 M⊙ and the flux densities at 24, 70 and 160 p.m from MIPS ,-3.2× 10^7 M⊙. High resolution Chandra observations of this merger remnant system have provided an unprecedented view of the complex nature exhibited by the distribution of hot gas in NGC 1316, which closely matches the morphology of ionized gas and to some extent also the dust. X-ray color-color plots for the resolved sources within the optical D25 extent of NGC 1316 have enabled us to separate them into different classes.展开更多
We performed time resolved spectroscopy of 1H0707-495 and IRAS 13224-3809 using long XMM-Newton observations. These are strongly variable narrow line Seyfert 1 galaxies and show broad features around 1 keV that have b...We performed time resolved spectroscopy of 1H0707-495 and IRAS 13224-3809 using long XMM-Newton observations. These are strongly variable narrow line Seyfert 1 galaxies and show broad features around 1 keV that have been interpreted as relativistically broad Fe Lc~ lines. Such features are not clearly observed in other active galactic nuclei despite sometimes having high iron abundance required by the best fitted blurred reflection models. Given the importance of these lines, we explore whether the rapid variability of spectral parameters may introduce broad bumps/dips artificially in the time averaged spectrum, which may then be mistaken as broadened lines. We tested this hypothesis by performing time resolved spectroscopy using long (〉 100 ks) XMM-Newton observations and by dividing them into segments with typical exposures of a few ks. We extracted spectra from each such segment and modeled them using a two component phenomenological model consisting of a power law to represent the hard component and a black body to represent the soft emission. As expected, both the sources showed variations in the spectral parameters. Using these variation trends, we simulated model spectra for each segment and then co-added to get a combined simulated spectrum. In the simulated spectra, we found no broad features below 1 keV and in particular no deviation near 0.9 keV as seen in the real averaged spectra. This implies that the broad Fe Lα line that is seen in the spectra of these sources is not an artifact of the variation of spectral components and, hence, provides evidence that the line is indeed genuine.展开更多
We present a multi-line study of the massive star-forming region IRAS 22506+5944. A new 6.7 GHz methanol maser was detected. ^12CO, 13CO, C180 and HCO+ J = 1 - 0 transition observations reveal a star-formation compl...We present a multi-line study of the massive star-forming region IRAS 22506+5944. A new 6.7 GHz methanol maser was detected. ^12CO, 13CO, C180 and HCO+ J = 1 - 0 transition observations reveal a star-formation complex consisting mainly of two cores. The dominant core has a mass of more than 200 Mo, while the other one is only about 35 340. Both cores are obviously at different evolutionary stages. A 12CO energetic bipolar outflow was detected with an outflow mass of about 15 Mo.展开更多
A multiwavelength study of a nearby dust lane early-type galaxy IC 5063 is presented. The objectives are to investigate dust extinction properties and the association of interstellar dust with other phases of ISM. The...A multiwavelength study of a nearby dust lane early-type galaxy IC 5063 is presented. The objectives are to investigate dust extinction properties and the association of interstellar dust with other phases of ISM. The color-index maps as well as the extinction maps derived from the analysis of deep CCD observations in optical passbands revealed a prominent dust lane along its optical major axis in the inner region. In addition, two more fainter and extended dust patterns are apparent in the color index map as well as extinction maps. These features are also evident in the smooth model subtracted residual maps. The extinction curve derived for this galaxy revealed that dust grains in it are identical to the canonical grains in the Milky Way with the dust grains little larger than the canonical grains. The total extinction measured in the V band extinction map enabled us to quantify the dust content of this galaxy to be equal to , an order of magnitude shorter than that estimated using the IRAS flux densities at 60 and 100 μm. A Multiphase ISM study revealed a surprising similarity in the morphologies of the Hα emitting ionized gas distribution and X-ray emitting gas. Systematic analysis of high resolution X-ray observations using Chandra telescope enabled us to detect 18 discrete X-ray sources within optical D25 region of IC 5063, out of which 17 sources were separated out as the low mass X-ray binaries and one as the high mass X-ray binary source in the X-ray color-color plot.展开更多
I identify a point-symmetric structure in recently published VLT/MUSE velocity maps of different elements in a plane along the line of sight at the center of the supernova remnant SNR 0540-69.3,and argue that jitterin...I identify a point-symmetric structure in recently published VLT/MUSE velocity maps of different elements in a plane along the line of sight at the center of the supernova remnant SNR 0540-69.3,and argue that jittering jets that exploded this core collapse supernova shaped this point-symmetric structure.The four pairs of two opposite clumps that compose this point symmetric structure suggest that two to four pairs of jittering jets shaped the inner ejecta in this plane.In addition,intensity images of several spectral lines reveal a faint strip(the main jet-axis)that is part of this plane of jittering jets and its similarity to morphological features in a few other SNRs and in some planetary nebulae further suggests shaping by jets.My interpretation implies that in addition to instabilities,jets also mix elements in the ejecta of core collapse supernovae.Based on the point-symmetric structure and under the assumption that jittering jets exploded this supernova,I estimate the component of the neutron star natal kick velocity on the plane of the sky to be■235 km s^(-1),and at an angle of■47°to the direction of the main jet-axis.I analyze this natal kick direction together with 12 other SNRs in the frame of the jittering jets explosion mechanism.展开更多
In star formation regions,the complex organic molecules(COMs)that contain peptide bonds(-NH-C(=O)-)play a major role in the metabolic process because-NH-C(=O)-is connected to amino acids(R-CHNH_2-COOH).Over the past f...In star formation regions,the complex organic molecules(COMs)that contain peptide bonds(-NH-C(=O)-)play a major role in the metabolic process because-NH-C(=O)-is connected to amino acids(R-CHNH_2-COOH).Over the past few decades,many COMs containing peptide-like bonds have been detected in hot molecular cores(HMCs),hot corinos,and cold molecular clouds,however,their prebiotic chemistry is poorly understood.We present the first detection of the rotational emission lines of formamide(NH_2CHO)and isocyanic acid(HNCO),which contain peptide-like bonds toward the chemically rich HMC G358.93-0.03 MM1,using high-resolution and high-sensitivity Atacama Large Millimeter/submillimeter Array bands 6 and 7.We estimate that the column densities of NH_2CHO and HNCO toward G358.93-0.03 MM1 are(2.80±0.29)×10~(15)cm~(-2)and(1.80±0.42)×10~(16)cm~(-2)with excitation temperatures of 165±21 K and 170±32 K,respectively.The fractional abundances of NH_2CHO and HNCO toward G358.93-0.03 MM1 are(9.03±1.44)×10~(-10)and(5.80±2.09)×10^(-9).We compare the estimated abundances of NH_2CHO and HNCO with the existing threephase warm-up chemical model abundance values and notice that the observed and modeled abundances are very close.We conclude that NH_2CHO is produced by the reaction of NH_2and H_2CO in the gas phase toward G358.93-0.03 MM1.Likewise,HNCO is produced on the surface of grains by the reaction of NH and CO toward G358.93-0.03 MM1.We also find that NH_2CHO and HNCO are chemically linked toward G358.93-0.03 MM1.展开更多
We revisit the γ-ray emission above 300 Me V towards the massive star-forming region of Orion B by adopting14 yr observations with the Fermi Large Area Telescope and utilizing the updated software tools.The extended ...We revisit the γ-ray emission above 300 Me V towards the massive star-forming region of Orion B by adopting14 yr observations with the Fermi Large Area Telescope and utilizing the updated software tools.The extended γ-ray emission region around Orion B is resolved into two components(region Ⅰ and region Ⅱ).The γ-ray spectrum of region I agrees with the predicted γ-ray spectrum assuming the cosmic ray(CR)density is the same as that of Alpha Magnetic Spectrometer(AMS-02)measured locally.Theγ-ray emissivity of region II appears to be deficit at low energy band(E<3 GeV).Through modeling we find that CR densities exhibit a significant deficit below 20 Ge V,which may be caused by a slow diffusion inside the dense region.This is probably caused by an increased magnetic field whose strength increases with the gas density.展开更多
We fit various color–magnitude diagrams(CMDs) of the high-latitude Galactic globular clusters NGC 5024(M53),NGC 5053,NGC 5272(M3),NGC 5466,and NGC 7099(M30) by isochrones from the Dartmouth Stellar Evolution Database...We fit various color–magnitude diagrams(CMDs) of the high-latitude Galactic globular clusters NGC 5024(M53),NGC 5053,NGC 5272(M3),NGC 5466,and NGC 7099(M30) by isochrones from the Dartmouth Stellar Evolution Database and Bag of Stellar Tracks and Isochrones for α–enrichment [α/Fe] = +0.4.For the CMDs,we use data sets from Hubble Space Telescope,Gaia,and other sources utilizing,at least,25 photometric filters for each cluster.We obtain the following characteristics with their statistical uncertainties for NGC 5024,NGC 5053,NGC 5272,NGC 5466,and NGC 7099,respectively:metallicities [Fe/H] =-1.93 ± 0.02,-2.08 ± 0.03,-1.60 ± 0.02,-1.95 ± 0.02,and-2.07 ± 0.04 dex with their systematic uncertainty 0.1 dex;ages 13.00 ± 0.11,12.70 ± 0.11,11.63 ± 0.07,12.15 ± 0.11,and 12.80 ± 0.17 Gyr with their systematic uncertainty 0.8 Gyr;distances(systematic uncertainty added) 18.22 ± 0.06 ± 0.60,16.99 ± 0.06 ± 0.56,10.08 ± 0.04 ± 0.33,15.59 ±0.03 ± 0.51,and 8.29 ± 0.03 ± 0.27 kpc;reddenings E(B-V) = 0.023 ± 0.004,0.017 ± 0.004,0.023 ± 0.004,0.023 ± 0.003,and 0.045 ± 0.002 mag with their systematic uncertainty 0.01 mag;extinctions AV= 0.08 ± 0.01,0.06 ± 0.01,0.08 ± 0.01,0.08 ± 0.01,and 0.16 ± 0.01 mag with their systematic uncertainty 0.03 mag,which suggest the total Galactic extinction AV= 0.08 across the whole Galactic dust to extragalactic objects at the North Galactic Pole.The horizontal branch morphology difference of these clusters is explained by their different metallicity,age,mass-loss efficiency,and loss of low-mass members in the evolution of the core-collapse cluster NGC 7099 and loose clusters NGC 5053 and NGC 5466.展开更多
基金the Swami Vivekananda Merit-cum-Means Scholarship(SVMCM)for financial support for this research。
文摘The observation of oxygen(O)-and nitrogen(N)-bearing molecules gives an idea about the complex prebiotic chemistry in the interstellar medium.Recent millimeter and submillimeter wavelength observations have shown the presence of complex O-and N-bearing molecules in the star formation regions.So,the investigation of those molecules is crucial to understanding the chemical complexity in the star-forming regions.In this article,we present the identification of the rotational emission lines of N-bearing molecules ethyl cyanide(C_(2)H_(5)CN)and cyanoacetylene(HC_(3)N),and O-bearing molecule methyl formate(CH_(3)OCHO)toward high-mass protostar IRAS18089–1732 using the Atacama Compact Array.We also detected the emission lines of both the N-and O-bearing molecule formamide(NH_(2)CHO)in the envelope of IRAS 18089–1732.We have detected the v=0 and 1 state rotational emission lines of CH_(3)OCHO.We also detected the two vibrationally excited states of HC_(3)N(v7=1 and v7=2).The estimated fractional abundances of C_(2)H_(5)CN,HC_(3)N(v7=1),HC_(3)N(v7=2),and NH_(2)CHO toward IRAS 18089–1732 are(1.40±0.5)×10^(-10),(7.5±0.7)×10^(-11),(3.1±0.4)×10^(-11),and(6.25±0.82)×10^(-11)respectively.Similarly,the estimated fractional abundances of CH_(3)OCHO(v=0)and CH_(3)OCHO(v=1)are(1.90±0.9)×10^(-9)and(8.90±0.8)×10^(-10),respectively.We also created the integrated emission maps of the detected molecules,and the observed molecules may have originated from the extended envelope of the protostar.We show that C_(2)H_(5)CNand HC_(3)N are most probably formed via the subsequential hydrogenation of the CH_(2)CHCNand the reaction between C_(2)H_(2)and CN on the grain surface of IRAS 18089–1732.We found that NH_(2)CHO is probably produced due to the reaction between NH_(2)and H_(2)CO in the gas phase.Similarly,CH_(3)OCHO is possibly created via the reaction between radical CH_(3)O and radical HCO on the grain surface of IRAS 18089–1732.
基金supported by the 2011 Ministry of Education doctoral academic prizesupported by the young researcher grant of National Astronomical Observatories,Chinese Academy of Sciences
文摘We have carried out observations of 12CO J=2-1 and 12CO J=3-2 to- ward the high-mass protostellar candidate IRAS 20188+3928. Compared with previ- ous observations, the 12CO J=2-1 and 12CO J=3-2 lines both have asymmetric pro- files with an absorption dip. The velocity of the absorption dip is ~ 1.0 km s-1. The spectral shape may be caused by rotation. The velocity-integrated intensity map and position-velocity diagram of the 12CO J=2-1 line present an obvious bipolar com- ponent, further verifying that this region has an outflow motion. This region is also associated with an HII region, an IRAS source, and an H20 maser. The H20 maser has the velocity of 1.1 km s-1. Compared with the components of the outflow, we find that the H20 maser is not associated with the outflow. Using the large velocity gradi- ent model, we concluded that possible averaged gas densities of the blueshifted lobe and redshifted lobe are 1.0x 105 cm-3 and 2.0x 104 cm-a, while kinetic temperatures are 26.9 K and 52.9 K, respectively. Additionally, the outflow has a higher integrated intensity ratio (Ico J=3 - 2/Ico J=2 - 1).
基金the National Key R&D Program of China(No.2017YFA0402701)by the Joint Research Fund in Astronomy(U1631237)under a cooperative agreement between the National Natural Science Foundation of China(NSFC)+2 种基金the Chinese Academy of Sciences(CAS)by the Top Talents Program of Yunnan Province(2015HA030)the NSFC(Grant No.11973075)。
文摘Hydroxy acetone(CH3 COCH2 OH)is one of the smallest molecules that contain both hydroxyl and carbonyl group on neighboring carbon atoms.This steric configuration is characteristic of saccharides and determines their biochemical activity.The attempt to search for hydroxy acetone toward the massive star formation region Sagittarius B2(N)was unsuccessful.Here we report the first detection of CH3 COCH2 OH in the solar-type protostar IRAS 16293-2422 B,using the Atacama Large Millimeter Array science verification data at Band 4.In a total of 11 unblended transitions of CH3 COCH2 OH with upper level energies ranging from 86 to 246 K are identified.From our local thermodynamic equilibrium analysis,we derived that the rotational temperature of CH3 COCH2 OH is 160±21 K and the column density is(1.2±1.0)×10^16 cm^-2,which results in a fractional abundance of 7×10^-10 with respect to molecular hydrogen.In this work,we present the identification of CH3 COCH2 OH in IRAS 16293-2422 B and propose a simple formation mechanism.The unambiguous identification of hydroxyacetone may provide the basis for future study of the origin and evolution of saccharides in the interstellar medium.
基金Supported by the National Natural Science Foundation of China
文摘Near-infrared images and K-band spectroscopy of the massive star-formingregion IRAS 23151+5912 are presented. The JHK′ images reveal an embedded infrared clusterassociated with infrared nebula, and the H_2 (2.12 μm) narrowband image provides for the first timeevidence of outflow activity associated with the cluster. That the cluster is young can be shown bythe high percentage of infrared excess sources and the outflow activity. We suggest an age of thecluster of ~ 10~6 yr. Eight young stars are found in the bright nebular core around IRAS23151+5912. By the color-magnitude diagrams of the cluster, we found five high-mass YSOs and fourintermediate-mass YSOs in the cluster. Eight H_2 emission features are discovered in the region witha scattered and non-axisymmetric distribution, indicating the existence of multiple outflows drivenby the cluster. Diffuse H_2 emission detected to the north and to the west of the cluster mayresult from UV leakage of the cluster. Brγ, H_2, and CIV emission lines are found in the K-bandspectrum of the brightest source, NIRS 19, indicating the presence of envelope, stellar wind, andshock in the circumstellar environment. We have estimated an O7-O9 spectral type for the centralmassive YSO (20 ~ 30 solar mass), with an age of less than 1 x 10~6 yr.
文摘Based on observations of 12CO (J=2–1), we select targets from archived Infrared Astronomical Satellite (IRAS) data of IRAS 02459+6029 and IRAS 22528+5936 as samples of cloud-cloud collision, according to the criteria given by Vallee. Then we use the Midcourse Space Experiment (MSX) A band (8.28 μm) images and the NRAO VLA Sky Survey (NVSS) (1.4 GHz) continuum images to investigate the association between molecular clouds traced by the CO contour maps. The distribution of dust and ionized hydrogen shows an obvious association with the CO contour maps toward IRAS 02459+6029. However, in the possible collision region of IRAS 22528+5936, NVSS continuum radiation is not detected and the MSX sources are merely associated with the central star. The velocity fields of the two regions indicate the direction of the pressure and interaction. In addition, we have identified candidates of young stellar objects (YSOs) by using data from the Two Micron All Sky Survey (2MASS) in JHK bands expressed in a color-color diagram. The distribution of YSOs shows that the possible collision region is denser than other regions. All the evidence suggests that IRAS 02459+6029 could be an example of cloud-cloud collision, and that IRAS 22528+5936 could be two separate non-colliding clouds.
基金provided by the Program for New Century Excellent Talents in University (NCET)the National Natural Science Foundation of China (Grant Nos. 10878010, 10221001 and 10633040)the National Basic Research Program of China (GrantNo. 2007CB815405)
文摘Warm absorption is a common phenomenon in Seyfert 1 s and quasars, but is rare in Seyfert 2s. We report the detection of warm absorbers with high energy resolution in the Seyfert 2 galaxy IRAS 18325-5926 for the first time with Chandra HETGS spectra. An intrinsic absorbing line system with an outflow velocity - 400 km s^-1 was found, which is contributed by two warm absorbers with FWHM of 570 km s^-1 and 1360 km s^-1, respectively. The two absorbers were adjacent, and moving transversely across our line of sight. We constrained the distance between the center and the absorbers to be a small value, suggesting that the absorbers may originate from the highly ionized accretion disk wind ejected five years ago. The perspective of this type 2 Seyfert provides the best situation in which to investigate the vertical part of the funnel-like outflows. Another weak absorbing line system with zero redshift was also detected, which could be due to Galactic absorption with very high temperature or an intrinsic outflow with a very high velocity - 6000 km s^-1.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10833006, 10773014, and 10978014)the Ministry of Science and Technology National Basic Science program (973 Program, Grant No. 2007CB815406)
文摘We present a stellar population synthesis study of a type II luminous infrared galaxy, IRAS F21013-0739. Optical images show clear characteristics of a merger remnant. The H-band absolute magnitude is MH = -25.1, which is -2 times as luminous as L* galaxies. Stellar populations are obtained through the stellar synthesis code STARLIGHT. We find that it experienced a recent starburst (SB) phase - 100 Myr ago. By reconstructing the ultraviolet-to-optical spectrum, and adopting Calzetti et al. and Leitherer et al.'s extinction curves, we estimate the past infrared (IR) luminosities of the host galaxy and find it may have experienced an ultraluminous infrared galaxy phase which lasted for about 100 Myr. Its i-band absolute magnitude is Mi = -22.463, and its spectral type shows type 2 active galactic nucleus (AGN) characteristics. The mass of the supermassive black-hole is estimated to be MBH = 1.6 × 107 M⊙ (lower- limit). The Eddington ratio Lbol/LEdd is 0.15, which is typical of Palomar-Green (PG) quasars. Both the nuclear SB and AGN contribute to the present IR luminosity budget, and the SB contributes -67%. On the diagram of IR color versus IR/opfical excess, it is located between IR quasars and PG quasars. These results indicate that IRAS F21013-0739 has probably evolved from a ULIRG, and it can possibly evolve into an AGN.
基金supported by UGC, New Delhi under the major research project F.No. (36-240/2008-SR)the use of the High Performance Computing Facility developed under the DST- FIST scheme sanction No. SR/FST/PSI-145
文摘We present multi-wavelength imagery of the merger remnant galaxy NGC 1316 with an objective to study the dust content and its association with the other phases of the interstellar medium. Color-index maps as well as extinction maps derived for this galaxy reveal an intricate and complex dust morphology in NGC 1316, i.e. there is a prominent lane in the inner part, while at about 6-7 kpc it apparently takes the form of an arc-like pattern extending along the northeast direction. In addition to this, several other dust clumps and knots are also evident in this galaxy. The dust emission mapped using Spitzer data at 8 μm indicates even more complex morphological structures of the dust in NGC 1316. The extinction curve derived over the optical to near-IR bands closely follows the standard Galactic curve, suggesting similar properties of the dust grains. The dust content of NGC 1316, estimated from optical extinction, is ,- 2.13 × 10^5 M⊙. This is a lower limit compared to that estimated using the IRAS flux densities of ,-5.17× 10^6 M⊙ and the flux densities at 24, 70 and 160 p.m from MIPS ,-3.2× 10^7 M⊙. High resolution Chandra observations of this merger remnant system have provided an unprecedented view of the complex nature exhibited by the distribution of hot gas in NGC 1316, which closely matches the morphology of ionized gas and to some extent also the dust. X-ray color-color plots for the resolved sources within the optical D25 extent of NGC 1316 have enabled us to separate them into different classes.
基金financial support from CSIR, New Delhifinancial support from DST, New Delhi through the INSPIRE Scheme
文摘We performed time resolved spectroscopy of 1H0707-495 and IRAS 13224-3809 using long XMM-Newton observations. These are strongly variable narrow line Seyfert 1 galaxies and show broad features around 1 keV that have been interpreted as relativistically broad Fe Lc~ lines. Such features are not clearly observed in other active galactic nuclei despite sometimes having high iron abundance required by the best fitted blurred reflection models. Given the importance of these lines, we explore whether the rapid variability of spectral parameters may introduce broad bumps/dips artificially in the time averaged spectrum, which may then be mistaken as broadened lines. We tested this hypothesis by performing time resolved spectroscopy using long (〉 100 ks) XMM-Newton observations and by dividing them into segments with typical exposures of a few ks. We extracted spectra from each such segment and modeled them using a two component phenomenological model consisting of a power law to represent the hard component and a black body to represent the soft emission. As expected, both the sources showed variations in the spectral parameters. Using these variation trends, we simulated model spectra for each segment and then co-added to get a combined simulated spectrum. In the simulated spectra, we found no broad features below 1 keV and in particular no deviation near 0.9 keV as seen in the real averaged spectra. This implies that the broad Fe Lα line that is seen in the spectra of these sources is not an artifact of the variation of spectral components and, hence, provides evidence that the line is indeed genuine.
基金supported by the National Natural Science Foundation of China(Grant Nos.10673024,10733030,10703010 and 10621303)the National Basic Research Program of China-973 Program(2007CB815403)
文摘We present a multi-line study of the massive star-forming region IRAS 22506+5944. A new 6.7 GHz methanol maser was detected. ^12CO, 13CO, C180 and HCO+ J = 1 - 0 transition observations reveal a star-formation complex consisting mainly of two cores. The dominant core has a mass of more than 200 Mo, while the other one is only about 35 340. Both cores are obviously at different evolutionary stages. A 12CO energetic bipolar outflow was detected with an outflow mass of about 15 Mo.
文摘A multiwavelength study of a nearby dust lane early-type galaxy IC 5063 is presented. The objectives are to investigate dust extinction properties and the association of interstellar dust with other phases of ISM. The color-index maps as well as the extinction maps derived from the analysis of deep CCD observations in optical passbands revealed a prominent dust lane along its optical major axis in the inner region. In addition, two more fainter and extended dust patterns are apparent in the color index map as well as extinction maps. These features are also evident in the smooth model subtracted residual maps. The extinction curve derived for this galaxy revealed that dust grains in it are identical to the canonical grains in the Milky Way with the dust grains little larger than the canonical grains. The total extinction measured in the V band extinction map enabled us to quantify the dust content of this galaxy to be equal to , an order of magnitude shorter than that estimated using the IRAS flux densities at 60 and 100 μm. A Multiphase ISM study revealed a surprising similarity in the morphologies of the Hα emitting ionized gas distribution and X-ray emitting gas. Systematic analysis of high resolution X-ray observations using Chandra telescope enabled us to detect 18 discrete X-ray sources within optical D25 region of IC 5063, out of which 17 sources were separated out as the low mass X-ray binaries and one as the high mass X-ray binary source in the X-ray color-color plot.
基金supported by a grant from the Israel Science Foundation(769/20)。
文摘I identify a point-symmetric structure in recently published VLT/MUSE velocity maps of different elements in a plane along the line of sight at the center of the supernova remnant SNR 0540-69.3,and argue that jittering jets that exploded this core collapse supernova shaped this point-symmetric structure.The four pairs of two opposite clumps that compose this point symmetric structure suggest that two to four pairs of jittering jets shaped the inner ejecta in this plane.In addition,intensity images of several spectral lines reveal a faint strip(the main jet-axis)that is part of this plane of jittering jets and its similarity to morphological features in a few other SNRs and in some planetary nebulae further suggests shaping by jets.My interpretation implies that in addition to instabilities,jets also mix elements in the ejecta of core collapse supernovae.Based on the point-symmetric structure and under the assumption that jittering jets exploded this supernova,I estimate the component of the neutron star natal kick velocity on the plane of the sky to be■235 km s^(-1),and at an angle of■47°to the direction of the main jet-axis.I analyze this natal kick direction together with 12 other SNRs in the frame of the jittering jets explosion mechanism.
文摘In star formation regions,the complex organic molecules(COMs)that contain peptide bonds(-NH-C(=O)-)play a major role in the metabolic process because-NH-C(=O)-is connected to amino acids(R-CHNH_2-COOH).Over the past few decades,many COMs containing peptide-like bonds have been detected in hot molecular cores(HMCs),hot corinos,and cold molecular clouds,however,their prebiotic chemistry is poorly understood.We present the first detection of the rotational emission lines of formamide(NH_2CHO)and isocyanic acid(HNCO),which contain peptide-like bonds toward the chemically rich HMC G358.93-0.03 MM1,using high-resolution and high-sensitivity Atacama Large Millimeter/submillimeter Array bands 6 and 7.We estimate that the column densities of NH_2CHO and HNCO toward G358.93-0.03 MM1 are(2.80±0.29)×10~(15)cm~(-2)and(1.80±0.42)×10~(16)cm~(-2)with excitation temperatures of 165±21 K and 170±32 K,respectively.The fractional abundances of NH_2CHO and HNCO toward G358.93-0.03 MM1 are(9.03±1.44)×10~(-10)and(5.80±2.09)×10^(-9).We compare the estimated abundances of NH_2CHO and HNCO with the existing threephase warm-up chemical model abundance values and notice that the observed and modeled abundances are very close.We conclude that NH_2CHO is produced by the reaction of NH_2and H_2CO in the gas phase toward G358.93-0.03 MM1.Likewise,HNCO is produced on the surface of grains by the reaction of NH and CO toward G358.93-0.03 MM1.We also find that NH_2CHO and HNCO are chemically linked toward G358.93-0.03 MM1.
基金supported by National Key R&D Program of China(grant No.2023YFE0117200)the National Natural Science Foundation of China(NSFC,grant Nos.12133003,12103011)+2 种基金R-Z.Y.is supported by the NSFC under grants 11421303,12041305Science and Technology Program of Guangxi(grant Nos.AD 21220075 and 2024GXNSFBA010375)the national youth thousand talents program in China。
文摘We revisit the γ-ray emission above 300 Me V towards the massive star-forming region of Orion B by adopting14 yr observations with the Fermi Large Area Telescope and utilizing the updated software tools.The extended γ-ray emission region around Orion B is resolved into two components(region Ⅰ and region Ⅱ).The γ-ray spectrum of region I agrees with the predicted γ-ray spectrum assuming the cosmic ray(CR)density is the same as that of Alpha Magnetic Spectrometer(AMS-02)measured locally.Theγ-ray emissivity of region II appears to be deficit at low energy band(E<3 GeV).Through modeling we find that CR densities exhibit a significant deficit below 20 Ge V,which may be caused by a slow diffusion inside the dense region.This is probably caused by an increased magnetic field whose strength increases with the gas density.
基金financial support from the Russian Science Foundation (grant No.20-72-10052)。
文摘We fit various color–magnitude diagrams(CMDs) of the high-latitude Galactic globular clusters NGC 5024(M53),NGC 5053,NGC 5272(M3),NGC 5466,and NGC 7099(M30) by isochrones from the Dartmouth Stellar Evolution Database and Bag of Stellar Tracks and Isochrones for α–enrichment [α/Fe] = +0.4.For the CMDs,we use data sets from Hubble Space Telescope,Gaia,and other sources utilizing,at least,25 photometric filters for each cluster.We obtain the following characteristics with their statistical uncertainties for NGC 5024,NGC 5053,NGC 5272,NGC 5466,and NGC 7099,respectively:metallicities [Fe/H] =-1.93 ± 0.02,-2.08 ± 0.03,-1.60 ± 0.02,-1.95 ± 0.02,and-2.07 ± 0.04 dex with their systematic uncertainty 0.1 dex;ages 13.00 ± 0.11,12.70 ± 0.11,11.63 ± 0.07,12.15 ± 0.11,and 12.80 ± 0.17 Gyr with their systematic uncertainty 0.8 Gyr;distances(systematic uncertainty added) 18.22 ± 0.06 ± 0.60,16.99 ± 0.06 ± 0.56,10.08 ± 0.04 ± 0.33,15.59 ±0.03 ± 0.51,and 8.29 ± 0.03 ± 0.27 kpc;reddenings E(B-V) = 0.023 ± 0.004,0.017 ± 0.004,0.023 ± 0.004,0.023 ± 0.003,and 0.045 ± 0.002 mag with their systematic uncertainty 0.01 mag;extinctions AV= 0.08 ± 0.01,0.06 ± 0.01,0.08 ± 0.01,0.08 ± 0.01,and 0.16 ± 0.01 mag with their systematic uncertainty 0.03 mag,which suggest the total Galactic extinction AV= 0.08 across the whole Galactic dust to extragalactic objects at the North Galactic Pole.The horizontal branch morphology difference of these clusters is explained by their different metallicity,age,mass-loss efficiency,and loss of low-mass members in the evolution of the core-collapse cluster NGC 7099 and loose clusters NGC 5053 and NGC 5466.