The equation of Patwardhan and Kumar for water activities of mixed electrolyte solutions is extended to aqueous solutions containing non-electrolytes. This equation and the linear isopiestic relation are used to predi...The equation of Patwardhan and Kumar for water activities of mixed electrolyte solutions is extended to aqueous solutions containing non-electrolytes. This equation and the linear isopiestic relation are used to predict water activities of 56 ternary aqueous solutions in terms of the data of their binary subsystems. Both equation of Patwardhan and Kumar and the linear isopiestic relation can provide good predictions for water activities of the present 40 electrolyte solutions, and the linear isopiestic relation generally yields better predictions. The predictions of the extended equation of Patwardhan and Kumar and the linear isopiestic relation are in general quite reasonable for the present 8 ternary solutions of electrolytes and non-electrolytes, and the results of the linear isopiestic relation are usually better. The predictions of these two methods generally agree well with the experimental data for the 8 non-electrolyte mixtures being studied, and the linear isopiestic relation is better.展开更多
The simple equation relating the activity coefficient of each solute in mixed electrolyte solution to its value in binary solutions under isopiestic equilibrium was tested by comparison with the experimental data for ...The simple equation relating the activity coefficient of each solute in mixed electrolyte solution to its value in binary solutions under isopiestic equilibrium was tested by comparison with the experimental data for the 18 electrolyte solutions consisting of 1:1, 1:2, and 1:3 electrolytes. The isopiestic measurements were made on the quaternary system BaCl2-NH4Br-NaI-H2O and its ternary subsystems NaI-NH4Br-H2O, NaI-BaCl2-H2O, and NH4Br-BaCl2-H2O at 298.15K. The results were used to test the applicability of the Zdanovskii's rule to the mixed electrolyte solutions which contain no common ions, and the agreement is excellent. The activity coefficients of the solutes in the above quaternary and ternary systems calculated from the above-mentioned simple equation are in good agreement with the Pitzer's equation.展开更多
Grafting is widely established in agriculture and provides practical advantages for vegetable production. We investigated physiological differences between the grafted combinations of Dutch (Starbuck and Maxifort) and...Grafting is widely established in agriculture and provides practical advantages for vegetable production. We investigated physiological differences between the grafted combinations of Dutch (Starbuck and Maxifort) and Japanese (Reiyo, Receive and Magnet) tomato cultivars. Plants were grown hydroponically until the flowers on the first truss bloomed, and the following parameters were measured: fresh weight of the aerial parts, root surface area, root permeability (by using a pressure chamber), and water potential of exudates (by using an isopiestic psychrometer). The Starbuck/Maxifort combination had higher values of the aerial part weight, root surface area, and root permeability than Reiyo/Receive, whereas Reiyo/Maxifort tended to have higher values of these parameters than Reiyo/Receive and Reiyo/Magnet. Maxifort had a significantly larger root surface area than Receive, but root permeability was not significantly different. InReiyo/Maxifort and Starbuck/Receive, these parameters were not significantly different except for a single comparison of root permeability. Thus, root permeability and root surface area may depend not only on the rootstock but be also affected by scion in grafted plants. Water potential of exudates was similar in most combinations and experiments. This shows that three rootstock cultivars provided similar nutrient concentrations even with different scions.展开更多
基金the National Natural Science Foundation of China (No. 20276037, No. 20006010).
文摘The equation of Patwardhan and Kumar for water activities of mixed electrolyte solutions is extended to aqueous solutions containing non-electrolytes. This equation and the linear isopiestic relation are used to predict water activities of 56 ternary aqueous solutions in terms of the data of their binary subsystems. Both equation of Patwardhan and Kumar and the linear isopiestic relation can provide good predictions for water activities of the present 40 electrolyte solutions, and the linear isopiestic relation generally yields better predictions. The predictions of the extended equation of Patwardhan and Kumar and the linear isopiestic relation are in general quite reasonable for the present 8 ternary solutions of electrolytes and non-electrolytes, and the results of the linear isopiestic relation are usually better. The predictions of these two methods generally agree well with the experimental data for the 8 non-electrolyte mixtures being studied, and the linear isopiestic relation is better.
基金the National-Natural Science Foundation of China (No.20476059, No.20276037) and 863 Hi-Technology Research and Development Program of China (2004 AA616040).
文摘The simple equation relating the activity coefficient of each solute in mixed electrolyte solution to its value in binary solutions under isopiestic equilibrium was tested by comparison with the experimental data for the 18 electrolyte solutions consisting of 1:1, 1:2, and 1:3 electrolytes. The isopiestic measurements were made on the quaternary system BaCl2-NH4Br-NaI-H2O and its ternary subsystems NaI-NH4Br-H2O, NaI-BaCl2-H2O, and NH4Br-BaCl2-H2O at 298.15K. The results were used to test the applicability of the Zdanovskii's rule to the mixed electrolyte solutions which contain no common ions, and the agreement is excellent. The activity coefficients of the solutes in the above quaternary and ternary systems calculated from the above-mentioned simple equation are in good agreement with the Pitzer's equation.
基金Supported by the National Natural Science Foundation of China (No.20476059, No.20276037) and 863 Hi-Technology Re-search and Development Program of China (2004 AA616040).
文摘Grafting is widely established in agriculture and provides practical advantages for vegetable production. We investigated physiological differences between the grafted combinations of Dutch (Starbuck and Maxifort) and Japanese (Reiyo, Receive and Magnet) tomato cultivars. Plants were grown hydroponically until the flowers on the first truss bloomed, and the following parameters were measured: fresh weight of the aerial parts, root surface area, root permeability (by using a pressure chamber), and water potential of exudates (by using an isopiestic psychrometer). The Starbuck/Maxifort combination had higher values of the aerial part weight, root surface area, and root permeability than Reiyo/Receive, whereas Reiyo/Maxifort tended to have higher values of these parameters than Reiyo/Receive and Reiyo/Magnet. Maxifort had a significantly larger root surface area than Receive, but root permeability was not significantly different. InReiyo/Maxifort and Starbuck/Receive, these parameters were not significantly different except for a single comparison of root permeability. Thus, root permeability and root surface area may depend not only on the rootstock but be also affected by scion in grafted plants. Water potential of exudates was similar in most combinations and experiments. This shows that three rootstock cultivars provided similar nutrient concentrations even with different scions.