Direct numerical simulations (DNS) were performed for the forced homogeneous isotropic turbulence (FHIT) with/without polymer additives in order to elaborate the characteristics of the turbulent energy cascading i...Direct numerical simulations (DNS) were performed for the forced homogeneous isotropic turbulence (FHIT) with/without polymer additives in order to elaborate the characteristics of the turbulent energy cascading influenced by drag-reducing effects. The finite elastic non-linear extensibility-Peterlin model (FENE-P) was used as the conformation tensor equation for the viscoelastic polymer solution. Detailed analyses of DNS data were carried out in this paper for the turbulence scaling law and the topological dynamics of FHIT as well as the important turbulent parameters, including turbulent kinetic energy spectra, enstrophy and strain, velocity structure function, small-scale intermittency, etc. A natural and straightforward definition for the drag reduction rate was also proposed for the drag-reducing FHIT based on the decrease degree of the turbulent kinetic energy. It was found that the turbulent energy cascading in the FHIT was greatly modified by the drag-reducing polymer additives. The enstrophy and the strain fields in the FH1T of the polymer solution were remarkably weakened as compared with their Newtonian counterparts. The small-scale vortices and the small-scale intermittency were all inhibited by the viscoelastic effects in the FHIT of the polymer solution. However, the scaling law in a fashion of extended self-similarity for the FHIT of the polymer solution, within the presently simulated range of Weissenberg numbers, had no distinct differences compared with that of the Newtonian fluid case.展开更多
The application of large-eddy simulation (LES) to particle-laden turbulence raises such a fundamental question as whether the LES with a subgrid scale (SGS) model can correctly predict Lagrangian time correlations...The application of large-eddy simulation (LES) to particle-laden turbulence raises such a fundamental question as whether the LES with a subgrid scale (SGS) model can correctly predict Lagrangian time correlations (LTCs). Most of the currently existing SGS models are constructed based on the energy budget equations. Therefore, they are able to correctly predict energy spectra, but they may not ensure the correct prediction on the LTCs. Previous researches investigated the effect of the SGS modeling on the Eulerian time correlations. This paper is devoted to study the LTCs in LES. A direct numerical simulation (DNS) and the LES with a spectral eddy viscosity model are performed for isotropic turbulence and the LTCs are calculated using the passive vector method. Both a priori and a posteriori tests are carried out. It is observed that the subgrid;scale contributions to the LTCs cannot be simply ignored and the LES overpredicts the LTCs than the DNS. It is concluded from the straining hypothesis that an accurate prediction of enstrophy spectra is most critical to the prediction of the LTCs.展开更多
The approach of Obukhov assuming a constant skewness was used to obtain analytical corrections to the scaling of the second order structure function, starting from Kolmogorov's 4/5 law. These corrections can be used ...The approach of Obukhov assuming a constant skewness was used to obtain analytical corrections to the scaling of the second order structure function, starting from Kolmogorov's 4/5 law. These corrections can be used in model applications in which explicit expressions, rather than numerical solutions are needed. The comparison with an interpolation formula proposed by Batchelor, showed that the latter gives surprisingly precise results. The modification of the same method to obtain analytical corrections to the scaling law, taking into account the possible corrections induced by intermittency, is also proposed.展开更多
A recently introduced nonlinear model undergoes evaluations based on two isotropic turbulent cases:a University of Wiscosion-Madison case at a moderate Reynolds number and a Johns Hopkins University case at a high Rey...A recently introduced nonlinear model undergoes evaluations based on two isotropic turbulent cases:a University of Wiscosion-Madison case at a moderate Reynolds number and a Johns Hopkins University case at a high Reynolds number.The model uses an estimation of the subgrid-scale(SGS) kinetic energy to model the magnitude of the SGS stress tensor,and uses the normalized velocity gradient tensor to model the structure of the SGS stress tensor.Testing is performed for the first case through a comparison between direct numerical simulation(DNS) results and large eddy simulation(LES) results regarding resolved kinetic energy and energy spectrum.In the second case,we examine the resolved kinetic energy,the energy spectrum,as well as other key statistics including the probability density functions of velocities and velocity gradients,the skewness factors,and the flatness factors.Simulations using the model are numerically stable,and results are satisfactorily compared with DNS results and consistent with statistical theories of turbulence.展开更多
The absence of sub-grid scale(SGS) motions leads to severe errors in particle pair dynamics, which represents a great challenge to the large eddy simulation of particle-laden turbulent flow. In order to address this i...The absence of sub-grid scale(SGS) motions leads to severe errors in particle pair dynamics, which represents a great challenge to the large eddy simulation of particle-laden turbulent flow. In order to address this issue,data from direct numerical simulation(DNS) of homogenous isotropic turbulence coupled with Lagrangian particle tracking are used as a benchmark to evaluate the corresponding results of filtered DNS(FDNS). It is found that the filtering process in FDNS will lead to a non-monotonic variation of the particle collision statistics, including radial distribution function, radial relative velocity, and the collision kernel. The peak of radial distribution function shifts to the large-inertia region due to the lack of SGS motions, and the analysis of the local flowstructure characteristic variable at particle position indicates that the most effective interaction scale between particles and fluid eddies is increased in FDNS. Moreover,this scale shifting has an obvious effect on the odd-order moments of the probability density function of radial relative velocity, i.e. the skewness, which exhibits a strong correlation to the variance of radial distribution function in FDNS.As a whole, the radial distribution function, together with radial relative velocity, can compensate the SGS effects for the collision kernel in FDNS when the Stokes number based on the Kolmogorov time scale is greater than 3.0. However,it still leaves considerable errors for St< 3.0.展开更多
Direct numerical simulation of decaying homogeneous isotropic turbulence (DHIT) of a polymer solution is performed. In order to understand the polymer effect on turbulence or additive-turbulence interaction, we dire...Direct numerical simulation of decaying homogeneous isotropic turbulence (DHIT) of a polymer solution is performed. In order to understand the polymer effect on turbulence or additive-turbulence interaction, we directly investigate the influence of polymers on velocity gradient tensor including vorticity and strain. By visualizing vortex tubes and sheets, we observe a remarkable inhibition of vortex structures in an intermediate-scale field and a small-scale field but not for a large scale field in DHIT with polymers. The geometric study indicates a strong relevance among the vorticity vector, rate-of-strain tensor, and polymer conformation tensor. Joint probability density functions show that the polymer effect can increase "strain generation resistance" and "vorticity generation resistance", i.e., inhibit the generation of vortex sheets and tubes, ultimately leading to turbulence inhibition effects.展开更多
Large-eddy simulations (LES) based on the temporal approximate deconvolution model were performed for a forced homogeneous isotropic turbulence (FHIT) with polymer additives at moderate Taylor Reynolds number. Fin...Large-eddy simulations (LES) based on the temporal approximate deconvolution model were performed for a forced homogeneous isotropic turbulence (FHIT) with polymer additives at moderate Taylor Reynolds number. Finitely extensible nonlinear elastic in the Peterlin approximation model was adopted as the constitutive equation for the filtered conformation tensor of the polymer molecules. The LES results were verified through comparisons with the direct numerical simulation results. Using the LES database of the FHIT in the Newtonian fluid and the polymer solution flows, the polymer effects on some important parameters such as strain, vorticity, drag reduction, and so forth were studied. By extracting the vortex structures and exploring the flatness factor through a high-order correlation function of velocity derivative and wavelet analysis, it can be found that the small-scale vortex structures and small-scale intermittency in the FHIT are all inhibited due to the existence of the polymers. The extended self-similarity scaling law in the polymer solution flow shows no apparent difference from that in the Newtonian fluid flow at the currently simulated ranges of Reynolds and Weissenberg numbers.展开更多
A description of inverse energy cascade(from small scale to large scale)in homogeneous isotropic turbulence is introduced by using an eigenvalue method.We show a special isotropic turbulence,in which the initial condi...A description of inverse energy cascade(from small scale to large scale)in homogeneous isotropic turbulence is introduced by using an eigenvalue method.We show a special isotropic turbulence,in which the initial condition is constructed by reversing the velocity field in space,i.e.,the time-reversed turbulence.It is shown that the product of eigenvalues of the rate-of-strain tensor can quantitatively describe the backward energy transfer process.This description is consistent to the velocity derivative skewness Sk.However,compared with Sk,it is easier to be obtained,and it is expected to be extended to anisotropic turbulence.Furthermore,this description also works for the resolved velocity field,which means that it can be used in engineering turbulent flows.The description presented here is desired to inspire future investigation for the modeling of the backward energy transfer process and lay the foundation for the accurate prediction of complex flows.展开更多
In this paper, we present an extensive study of the linearly forced isotropic turbulence. By using analytical method, we identify two parametric choices, of which they seem to be new as far as our knowledge goes. We p...In this paper, we present an extensive study of the linearly forced isotropic turbulence. By using analytical method, we identify two parametric choices, of which they seem to be new as far as our knowledge goes. We prove that the underlying nonlinear dynamical system for linearly forced isotropic turbulence is the general case of a cubic Lienard equation with linear damping. We also discuss a FokkerPlanck approach to this new dynamical system, which is bistable and exhibits two asymmetric and asymptotically stable stationary probability densities.展开更多
A direct numerical simulation is performed on 256~3 grids for decaying isotropic tur- bulence.The total kinematic energy,Taylor micro-scale,Taylor micro-scale Reynolds number and the velocity derivative skewness are c...A direct numerical simulation is performed on 256~3 grids for decaying isotropic tur- bulence.The total kinematic energy,Taylor micro-scale,Taylor micro-scale Reynolds number and the velocity derivative skewness are calculated.The snapshots of energy spectra and energy transfer spectra are plotted.These measurements verify the DIA predictions:decaying isotropic turbulence has the energy propagation and occupies the final decay periods.The skewness remains to some level with small variation even in the final decay period.展开更多
Closure models started from Chou's work have been developed for more than 70 years, aiming at providing analytical tools to describe turbulent flows in the spectral space. In this study, a preliminary attempt is pres...Closure models started from Chou's work have been developed for more than 70 years, aiming at providing analytical tools to describe turbulent flows in the spectral space. In this study, a preliminary attempt is presented to introduce a closure model in the physical space, using the velocity structure functions as key parameters. The present closure model appears to qualitatively reproduce the asymptotic scaling behav- iors at small and large scales, despite some inappropriate behaviors such as oscillations. Therefore, further improvements of the present model are expected to provide appropriate descriptions of turbulent flows in the physical space.展开更多
Theoretical results on the scaling properties of turbulent velocity fields are reported in this letter.Based on the Kolmogorov equation and typical models of the second-order statistical moments (energy spectrum and t...Theoretical results on the scaling properties of turbulent velocity fields are reported in this letter.Based on the Kolmogorov equation and typical models of the second-order statistical moments (energy spectrum and the second-order structure function),we have studied the relative scaling using the ESS method.It is found that the relative EES scaling exponent Sis greater than the real or theoretical inertial range scaling exponentξ,which is attributed to an evident bump in the ESS range.展开更多
The starting point for this paper lies in the results obtained by Tatsumi (2004) for isotropic turbulence with the self-preserving hypothesis. A careful consideration of the mathematical structure of the one-point v...The starting point for this paper lies in the results obtained by Tatsumi (2004) for isotropic turbulence with the self-preserving hypothesis. A careful consideration of the mathematical structure of the one-point velocity distribution function equation obtained by Tatsumi (2004) leads to an exact "analysis of all possible cases and to all admissible solutions of the problem. This paper revisits this interesting problem from a new point of view, and obtains a new complete set of solutions. Based on these exact solutions, some physically significant consequences of recent advances in the theory of homogenous statistical solution of the Navier-Stokes equations are presented. The comparison with former theory was also made. The origin of non-Caussian character could be deduced from the above exact solutions.展开更多
The mechanism of the response motion of a suspended particle to turbulent motion of its surrounding fluid is different according to si:e of turbulent eddies. The particle is dragged by the viscous force of large eddie...The mechanism of the response motion of a suspended particle to turbulent motion of its surrounding fluid is different according to si:e of turbulent eddies. The particle is dragged by the viscous force of large eddies, and meanwhile driven randomly by small eddies. Based on this understanding, the dispersion of a particle with finite size in a homogeneous isotropic turbulence is calculated in this study. Results show that there are two competing effects: when enhanced by the inertia of a particle, the long-term particle diffusivity is reduced by the finite size of the particle.展开更多
The closure of a turbulence field is a longstanding fundamental problem, while most closure models are introduced in spectral space. Inspired by Chou's quasi-normal closure method in spectral space, we propose an ana...The closure of a turbulence field is a longstanding fundamental problem, while most closure models are introduced in spectral space. Inspired by Chou's quasi-normal closure method in spectral space, we propose an analytical closure model for isotropic turbulence based on the extended scale similarity theory of the velocity structure function in physical space. The assumptions and certain approximations are justified with direct numerical simulation. The asymptotic scaling properties are reproduced by this new closure method, in comparison to the classical Batchelor model.展开更多
The present paper is a further development of our previous work in solving the wholeproblem of the homogeneous isotropic turbulence from the nitial period to the final period ofdecay. An expansion method is developed ...The present paper is a further development of our previous work in solving the wholeproblem of the homogeneous isotropic turbulence from the nitial period to the final period ofdecay. An expansion method is developed to obtain the axinlly symmetrical solution of theNavier-Stokes equations of motion in the form of an infinite set of nonlinear partial differen-tial equations of the second order. For the present we solve the zeroth order approximation.By using the method of Fourier transform, we get a nonlinear nitegro-differential equationfor the amplitude function in the wave number space.It is also the dynamical equation forthe energy spectrum. By choosing a suitable initial condition, we solve this equation numerically. The energyspectrum function and the energy transfer spectrum function thus calculated satisfy the spec-trum form of the karman-Howarth equation exactly. We Lave computed the energy spectrumfunction, the energy transfer function the decay of turbulent energy, the integral scale, Taylormicroscale, the double and triple velocity correlations on the whole range from the initialperiod to the final period of decay. As a whole all these calculated statistical physicalquantities agree with experiments very wall except a few cases with small discrepancies at largeseparations.展开更多
Homogeneous isotropic turbulence has been playing a key role in the research of turbulence theory.And the pseudo-spectral method is the most popular numerical method to simulate this type of flow fields in a periodic ...Homogeneous isotropic turbulence has been playing a key role in the research of turbulence theory.And the pseudo-spectral method is the most popular numerical method to simulate this type of flow fields in a periodic box,where fast Fourier transform(FFT)is mostly effective.However,the bottle-neck in this method is the memory of computer,which motivates us to construct a memory-saving algorithm for spectral method in present paper.Inevitably,more times of FFT are needed as compensation.In the most memory-saving situation,only 6 three-dimension arrays are employed in the code.The cost of computation is increased by a factor of 4,and that 38 FFTs are needed per time step instead of the previous 9 FFTs.A simulation of isotropic turbulence on 20483 grid can be implemented on a 256G distributed memory clusters through this method.展开更多
Artificial input of energy into the flow is neces sary to create and maintain a statistically stationary isotropic turbulence for sampling in studying the statistics. Due to the nonlinear coupling among different Four...Artificial input of energy into the flow is neces sary to create and maintain a statistically stationary isotropic turbulence for sampling in studying the statistics. Due to the nonlinear coupling among different Fourier modes through the triadic interaction, whether or not various forc ing schemes affect the statistics in turbulence is an impor tant and open question. We present detailed comparison of Lagrangian statistics of fluids particles in forced isotropic turbulent flows in 1283, 2563, and 5123 simulations, with Taylorscale Reynolds numbers in the range of 64-171, us ing a deterministic and a stochastic forcing scheme, respec tively. Several Lagrangian statistics are compared, such as velocity and acceleration autocorrelations, and moments of Lagrangian velocity increments. The differences in the La grangian statistics obtained from the two forcing schemes are shown to be small, indicating that the isotropic forcing schemes used have little effects on the Lagrangian statistics in the isotropic turbulence.展开更多
We review the concept of ‘‘equilibrium'' in turbulence. It generally means a property of the energy spectrum, it can also be understood in terms of a scalar property, the Taylor–Kolmogorov formula relating the di...We review the concept of ‘‘equilibrium'' in turbulence. It generally means a property of the energy spectrum, it can also be understood in terms of a scalar property, the Taylor–Kolmogorov formula relating the dissipation rate to the total energy and integral length scale. The implications of equilibrium and strong departure from equilibrium for turbulence modeling are stressed.展开更多
The lattice Boltzmann method (LBM) is coupled with the multiple-relaxation- time (MRT) collision model and the three-dimensional 19-discrete-velocity (D3Q19) model to resolve intermittent behaviors on small scal...The lattice Boltzmann method (LBM) is coupled with the multiple-relaxation- time (MRT) collision model and the three-dimensional 19-discrete-velocity (D3Q19) model to resolve intermittent behaviors on small scales in isotropic turbulent flows. The high- order scaling exponents of the velocity structure functions, the probability distribution functions of Lagrangian accelerations, and the local energy dissipation rates are investi- gated. The self-similarity of the space-time velocity structure functions is explored using the extended self-similarity (ESS) method, which was originally developed for velocity spatial structure functions. The scaling exponents of spatial structure functions at up to ten orders are consistent with the experimental measurements and theoretical results, implying that the LBM can accurately resolve the intermittent behaviors. This valida~ tion provides a solid basis for using the LBM to study more complex processes that are sensitive to small scales in turbulent flows, such as the relative dispersion of pollutants and mesoscale structures of preferential concentration of heavy particles suspended in turbulent flows.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 51076036 and 51206033)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No.51121004)+2 种基金the Fundamental Research Funds for the Central Universities,China (Grant No. HIT.BRET2.2010008)the Doctoral Fund of Ministry of Education of China (Grant No. 20112302110020)the China Postdoctoral Science Foundation (Grant No. 2011M500652)
文摘Direct numerical simulations (DNS) were performed for the forced homogeneous isotropic turbulence (FHIT) with/without polymer additives in order to elaborate the characteristics of the turbulent energy cascading influenced by drag-reducing effects. The finite elastic non-linear extensibility-Peterlin model (FENE-P) was used as the conformation tensor equation for the viscoelastic polymer solution. Detailed analyses of DNS data were carried out in this paper for the turbulence scaling law and the topological dynamics of FHIT as well as the important turbulent parameters, including turbulent kinetic energy spectra, enstrophy and strain, velocity structure function, small-scale intermittency, etc. A natural and straightforward definition for the drag reduction rate was also proposed for the drag-reducing FHIT based on the decrease degree of the turbulent kinetic energy. It was found that the turbulent energy cascading in the FHIT was greatly modified by the drag-reducing polymer additives. The enstrophy and the strain fields in the FH1T of the polymer solution were remarkably weakened as compared with their Newtonian counterparts. The small-scale vortices and the small-scale intermittency were all inhibited by the viscoelastic effects in the FHIT of the polymer solution. However, the scaling law in a fashion of extended self-similarity for the FHIT of the polymer solution, within the presently simulated range of Weissenberg numbers, had no distinct differences compared with that of the Newtonian fluid case.
基金the Chinese Academy of Sciences under the Innovative Project"Multi-scale modeling and simulation in complex Systems" (KJCX-SW-L08)the National Basic Research Program of China (973 Program) (2007CB814800) the National Natural Science Foundation of China (10325211, 10628206,10732090 and 10672012)
文摘The application of large-eddy simulation (LES) to particle-laden turbulence raises such a fundamental question as whether the LES with a subgrid scale (SGS) model can correctly predict Lagrangian time correlations (LTCs). Most of the currently existing SGS models are constructed based on the energy budget equations. Therefore, they are able to correctly predict energy spectra, but they may not ensure the correct prediction on the LTCs. Previous researches investigated the effect of the SGS modeling on the Eulerian time correlations. This paper is devoted to study the LTCs in LES. A direct numerical simulation (DNS) and the LES with a spectral eddy viscosity model are performed for isotropic turbulence and the LTCs are calculated using the passive vector method. Both a priori and a posteriori tests are carried out. It is observed that the subgrid;scale contributions to the LTCs cannot be simply ignored and the LES overpredicts the LTCs than the DNS. It is concluded from the straining hypothesis that an accurate prediction of enstrophy spectra is most critical to the prediction of the LTCs.
基金supported by the National Natural Science Foundation of China(10828204 and A020401)BUAA SJP 111 program
文摘The approach of Obukhov assuming a constant skewness was used to obtain analytical corrections to the scaling of the second order structure function, starting from Kolmogorov's 4/5 law. These corrections can be used in model applications in which explicit expressions, rather than numerical solutions are needed. The comparison with an interpolation formula proposed by Batchelor, showed that the latter gives surprisingly precise results. The modification of the same method to obtain analytical corrections to the scaling law, taking into account the possible corrections induced by intermittency, is also proposed.
基金supported by the National Science Foundation (EAR-0537856 and ATM-0854766)NASA (NNG06GE256)+1 种基金Customers of Xcel Energy through a grant (RD3-42) from the Renewable Develop-ment Fundthe University of Minnesota Institute for Renewable Energy and the Environment
文摘A recently introduced nonlinear model undergoes evaluations based on two isotropic turbulent cases:a University of Wiscosion-Madison case at a moderate Reynolds number and a Johns Hopkins University case at a high Reynolds number.The model uses an estimation of the subgrid-scale(SGS) kinetic energy to model the magnitude of the SGS stress tensor,and uses the normalized velocity gradient tensor to model the structure of the SGS stress tensor.Testing is performed for the first case through a comparison between direct numerical simulation(DNS) results and large eddy simulation(LES) results regarding resolved kinetic energy and energy spectrum.In the second case,we examine the resolved kinetic energy,the energy spectrum,as well as other key statistics including the probability density functions of velocities and velocity gradients,the skewness factors,and the flatness factors.Simulations using the model are numerically stable,and results are satisfactorily compared with DNS results and consistent with statistical theories of turbulence.
基金supported by the National Natural Science Foundation of China (Grants 51390494, 51306065, and 51276076)the Foundation of State Key Laboratory of Coal Combustion (Grant FSKLCCB1702)
文摘The absence of sub-grid scale(SGS) motions leads to severe errors in particle pair dynamics, which represents a great challenge to the large eddy simulation of particle-laden turbulent flow. In order to address this issue,data from direct numerical simulation(DNS) of homogenous isotropic turbulence coupled with Lagrangian particle tracking are used as a benchmark to evaluate the corresponding results of filtered DNS(FDNS). It is found that the filtering process in FDNS will lead to a non-monotonic variation of the particle collision statistics, including radial distribution function, radial relative velocity, and the collision kernel. The peak of radial distribution function shifts to the large-inertia region due to the lack of SGS motions, and the analysis of the local flowstructure characteristic variable at particle position indicates that the most effective interaction scale between particles and fluid eddies is increased in FDNS. Moreover,this scale shifting has an obvious effect on the odd-order moments of the probability density function of radial relative velocity, i.e. the skewness, which exhibits a strong correlation to the variance of radial distribution function in FDNS.As a whole, the radial distribution function, together with radial relative velocity, can compensate the SGS effects for the collision kernel in FDNS when the Stokes number based on the Kolmogorov time scale is greater than 3.0. However,it still leaves considerable errors for St< 3.0.
基金supported by the National Natural Science Foundation of China (Grant No. 10872060)the Fundamental Research Funds for the Central Universities (Grant No. HIT.BRET2.2010008)
文摘Direct numerical simulation of decaying homogeneous isotropic turbulence (DHIT) of a polymer solution is performed. In order to understand the polymer effect on turbulence or additive-turbulence interaction, we directly investigate the influence of polymers on velocity gradient tensor including vorticity and strain. By visualizing vortex tubes and sheets, we observe a remarkable inhibition of vortex structures in an intermediate-scale field and a small-scale field but not for a large scale field in DHIT with polymers. The geometric study indicates a strong relevance among the vorticity vector, rate-of-strain tensor, and polymer conformation tensor. Joint probability density functions show that the polymer effect can increase "strain generation resistance" and "vorticity generation resistance", i.e., inhibit the generation of vortex sheets and tubes, ultimately leading to turbulence inhibition effects.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51206033 and 51276046)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20112302110020)+2 种基金the China Postdoctoral Science Foundation(Grant No.2011M500652)the Heilongjiang Postdoctoral Science Foundation,China(Grant No.2011LBH-Z11139)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology,China(Grant No.HIT.NSRIF.2012070)
文摘Large-eddy simulations (LES) based on the temporal approximate deconvolution model were performed for a forced homogeneous isotropic turbulence (FHIT) with polymer additives at moderate Taylor Reynolds number. Finitely extensible nonlinear elastic in the Peterlin approximation model was adopted as the constitutive equation for the filtered conformation tensor of the polymer molecules. The LES results were verified through comparisons with the direct numerical simulation results. Using the LES database of the FHIT in the Newtonian fluid and the polymer solution flows, the polymer effects on some important parameters such as strain, vorticity, drag reduction, and so forth were studied. By extracting the vortex structures and exploring the flatness factor through a high-order correlation function of velocity derivative and wavelet analysis, it can be found that the small-scale vortex structures and small-scale intermittency in the FHIT are all inhibited due to the existence of the polymers. The extended self-similarity scaling law in the polymer solution flow shows no apparent difference from that in the Newtonian fluid flow at the currently simulated ranges of Reynolds and Weissenberg numbers.
基金the National Natural Science Foundation of China(Nos.12002318 and51976203)the Central Government Guides Local Science and Technology Development Fund Projects(No.YDZX20191400002850)the Science Foundation of North University of China(No.XJJ201929)。
文摘A description of inverse energy cascade(from small scale to large scale)in homogeneous isotropic turbulence is introduced by using an eigenvalue method.We show a special isotropic turbulence,in which the initial condition is constructed by reversing the velocity field in space,i.e.,the time-reversed turbulence.It is shown that the product of eigenvalues of the rate-of-strain tensor can quantitatively describe the backward energy transfer process.This description is consistent to the velocity derivative skewness Sk.However,compared with Sk,it is easier to be obtained,and it is expected to be extended to anisotropic turbulence.Furthermore,this description also works for the resolved velocity field,which means that it can be used in engineering turbulent flows.The description presented here is desired to inspire future investigation for the modeling of the backward energy transfer process and lay the foundation for the accurate prediction of complex flows.
基金supported by the National Natural Science Foundation of China(11172162,10572083)
文摘In this paper, we present an extensive study of the linearly forced isotropic turbulence. By using analytical method, we identify two parametric choices, of which they seem to be new as far as our knowledge goes. We prove that the underlying nonlinear dynamical system for linearly forced isotropic turbulence is the general case of a cubic Lienard equation with linear damping. We also discuss a FokkerPlanck approach to this new dynamical system, which is bistable and exhibits two asymmetric and asymptotically stable stationary probability densities.
文摘A direct numerical simulation is performed on 256~3 grids for decaying isotropic tur- bulence.The total kinematic energy,Taylor micro-scale,Taylor micro-scale Reynolds number and the velocity derivative skewness are calculated.The snapshots of energy spectra and energy transfer spectra are plotted.These measurements verify the DIA predictions:decaying isotropic turbulence has the energy propagation and occupies the final decay periods.The skewness remains to some level with small variation even in the final decay period.
基金supported by the National Natural Science Foundation of China(Nos.11572025,11202013,and 51420105008)
文摘Closure models started from Chou's work have been developed for more than 70 years, aiming at providing analytical tools to describe turbulent flows in the spectral space. In this study, a preliminary attempt is presented to introduce a closure model in the physical space, using the velocity structure functions as key parameters. The present closure model appears to qualitatively reproduce the asymptotic scaling behav- iors at small and large scales, despite some inappropriate behaviors such as oscillations. Therefore, further improvements of the present model are expected to provide appropriate descriptions of turbulent flows in the physical space.
基金supported by the National Natural Science Foundation of China(90816013,10572083)also supported by State Key Laboratory for Turbulence and Complex System
文摘Theoretical results on the scaling properties of turbulent velocity fields are reported in this letter.Based on the Kolmogorov equation and typical models of the second-order statistical moments (energy spectrum and the second-order structure function),we have studied the relative scaling using the ESS method.It is found that the relative EES scaling exponent Sis greater than the real or theoretical inertial range scaling exponentξ,which is attributed to an evident bump in the ESS range.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 90816013 and 10572083)
文摘The starting point for this paper lies in the results obtained by Tatsumi (2004) for isotropic turbulence with the self-preserving hypothesis. A careful consideration of the mathematical structure of the one-point velocity distribution function equation obtained by Tatsumi (2004) leads to an exact "analysis of all possible cases and to all admissible solutions of the problem. This paper revisits this interesting problem from a new point of view, and obtains a new complete set of solutions. Based on these exact solutions, some physically significant consequences of recent advances in the theory of homogenous statistical solution of the Navier-Stokes equations are presented. The comparison with former theory was also made. The origin of non-Caussian character could be deduced from the above exact solutions.
文摘The mechanism of the response motion of a suspended particle to turbulent motion of its surrounding fluid is different according to si:e of turbulent eddies. The particle is dragged by the viscous force of large eddies, and meanwhile driven randomly by small eddies. Based on this understanding, the dispersion of a particle with finite size in a homogeneous isotropic turbulence is calculated in this study. Results show that there are two competing effects: when enhanced by the inertia of a particle, the long-term particle diffusivity is reduced by the finite size of the particle.
文摘The closure of a turbulence field is a longstanding fundamental problem, while most closure models are introduced in spectral space. Inspired by Chou's quasi-normal closure method in spectral space, we propose an analytical closure model for isotropic turbulence based on the extended scale similarity theory of the velocity structure function in physical space. The assumptions and certain approximations are justified with direct numerical simulation. The asymptotic scaling properties are reproduced by this new closure method, in comparison to the classical Batchelor model.
文摘The present paper is a further development of our previous work in solving the wholeproblem of the homogeneous isotropic turbulence from the nitial period to the final period ofdecay. An expansion method is developed to obtain the axinlly symmetrical solution of theNavier-Stokes equations of motion in the form of an infinite set of nonlinear partial differen-tial equations of the second order. For the present we solve the zeroth order approximation.By using the method of Fourier transform, we get a nonlinear nitegro-differential equationfor the amplitude function in the wave number space.It is also the dynamical equation forthe energy spectrum. By choosing a suitable initial condition, we solve this equation numerically. The energyspectrum function and the energy transfer spectrum function thus calculated satisfy the spec-trum form of the karman-Howarth equation exactly. We Lave computed the energy spectrumfunction, the energy transfer function the decay of turbulent energy, the integral scale, Taylormicroscale, the double and triple velocity correlations on the whole range from the initialperiod to the final period of decay. As a whole all these calculated statistical physicalquantities agree with experiments very wall except a few cases with small discrepancies at largeseparations.
基金support from National Natural Science Funds for Distinguished Young Scholar group under Grant No.10921202National Climb Plan under Grant No.2009CB724100.
文摘Homogeneous isotropic turbulence has been playing a key role in the research of turbulence theory.And the pseudo-spectral method is the most popular numerical method to simulate this type of flow fields in a periodic box,where fast Fourier transform(FFT)is mostly effective.However,the bottle-neck in this method is the memory of computer,which motivates us to construct a memory-saving algorithm for spectral method in present paper.Inevitably,more times of FFT are needed as compensation.In the most memory-saving situation,only 6 three-dimension arrays are employed in the code.The cost of computation is increased by a factor of 4,and that 38 FFTs are needed per time step instead of the previous 9 FFTs.A simulation of isotropic turbulence on 20483 grid can be implemented on a 256G distributed memory clusters through this method.
基金supported by the 973 Program of China(2013CB834100)the National Natural Science Associate Foundation of China(U1230126)the National Science Foundation of China(11472277 and 11232011)
文摘Artificial input of energy into the flow is neces sary to create and maintain a statistically stationary isotropic turbulence for sampling in studying the statistics. Due to the nonlinear coupling among different Fourier modes through the triadic interaction, whether or not various forc ing schemes affect the statistics in turbulence is an impor tant and open question. We present detailed comparison of Lagrangian statistics of fluids particles in forced isotropic turbulent flows in 1283, 2563, and 5123 simulations, with Taylorscale Reynolds numbers in the range of 64-171, us ing a deterministic and a stochastic forcing scheme, respec tively. Several Lagrangian statistics are compared, such as velocity and acceleration autocorrelations, and moments of Lagrangian velocity increments. The differences in the La grangian statistics obtained from the two forcing schemes are shown to be small, indicating that the isotropic forcing schemes used have little effects on the Lagrangian statistics in the isotropic turbulence.
文摘We review the concept of ‘‘equilibrium'' in turbulence. It generally means a property of the energy spectrum, it can also be understood in terms of a scalar property, the Taylor–Kolmogorov formula relating the dissipation rate to the total energy and integral length scale. The implications of equilibrium and strong departure from equilibrium for turbulence modeling are stressed.
基金Project supported by the Science Challenge Program(No.TZ2016001)the National Natural Science Foundation of China(Nos.11472277,11572331,11232011,and 11772337)+2 种基金the Strategic Priority Research Program,Chinese Academy of Sciences(CAS)(No.XDB22040104)the Key Research Program of Frontier Sciences,CAS(No.QYZDJ-SSW-SYS002)the National Basic Research Program of China(973 Program)(No.2013CB834100)
文摘The lattice Boltzmann method (LBM) is coupled with the multiple-relaxation- time (MRT) collision model and the three-dimensional 19-discrete-velocity (D3Q19) model to resolve intermittent behaviors on small scales in isotropic turbulent flows. The high- order scaling exponents of the velocity structure functions, the probability distribution functions of Lagrangian accelerations, and the local energy dissipation rates are investi- gated. The self-similarity of the space-time velocity structure functions is explored using the extended self-similarity (ESS) method, which was originally developed for velocity spatial structure functions. The scaling exponents of spatial structure functions at up to ten orders are consistent with the experimental measurements and theoretical results, implying that the LBM can accurately resolve the intermittent behaviors. This valida~ tion provides a solid basis for using the LBM to study more complex processes that are sensitive to small scales in turbulent flows, such as the relative dispersion of pollutants and mesoscale structures of preferential concentration of heavy particles suspended in turbulent flows.