The effect of rare earth elements on the isothermal transformation and microstructures in 20Mn steel is in- vestigated by means of metallography and dilatometry.Rare earth elements decrease both the incubation period ...The effect of rare earth elements on the isothermal transformation and microstructures in 20Mn steel is in- vestigated by means of metallography and dilatometry.Rare earth elements decrease both the incubation period of pro-eutectoid ferrite and the rate of pearlitic transformation.In addition,rare earth elements play a role of reducing needle-like ferrite and the amount of pearlite,densifing the lamellar space of pearlite and enhcing segregation of carbide in granular bainite.It is suggested that rare earth elements may decrease the interfacial energy of grain boundary and interphase,hinder the diffusion of carbon atoms and form rare earth carbides with high melting point which reduce the carbon content in austenite.展开更多
Martensitic transformation behavior was studied for zirconia containing 4%~10% CeO2 (in mole fraction) by using a dilatometric method. The Ms (Martensite start temperature) decreased near linearly with increasing CeO...Martensitic transformation behavior was studied for zirconia containing 4%~10% CeO2 (in mole fraction) by using a dilatometric method. The Ms (Martensite start temperature) decreased near linearly with increasing CeO2. Different transformation modes were observed depending on the composition and cooling rate. ZrO2 containing 6% CeO2 showed isothermal transformation behavior, whereas ZrO2 containing 9% and 10% CeO2 showed athermal transformation behavior. However, ZrO2 containing 8% CeO2 showed either isothermal or athermal transformations behavior depending on the cooling rate. A TTT (Time-Temperature-Transformation) diagram was proposed for ZrO2 containing 8% CeO2.展开更多
Electric resistivity measurements and X-ray diffraction analysis were performed to study the isothermal phase transformation in amorphous Au-Si ribbons with eutectic composition pre- pared using melt-spinning techniqu...Electric resistivity measurements and X-ray diffraction analysis were performed to study the isothermal phase transformation in amorphous Au-Si ribbons with eutectic composition pre- pared using melt-spinning technique.A series of phase transformations take place spontaneously at room temperature and accelerate at elevated temperatures.Four stages of the transformation from amorphous state to the equilibrium state can be distinguished.Dis- cussion on the structural character of the metastable phases indicates that Hume-Rothery electron compounds and size factor compounds could form during isothermal aging.展开更多
With electron microscopy the investigation on isothermal martensite transformation in an Fe20.5Ni-4.8Mn alloy has been carried out to clarify the effect of austenite state on the transformation, by applying pre-deform...With electron microscopy the investigation on isothermal martensite transformation in an Fe20.5Ni-4.8Mn alloy has been carried out to clarify the effect of austenite state on the transformation, by applying pre-deformation to austenite before isothermal holding. Under the condition without pre-deformation, the isothermal martensite products are lath martensite with {111}fhabit planes. Dislocations in austenite seem to contribute to nucleation of martensite, and in this nascent Stage austenite substructure has no obvious effect on martensite growth. The consequent thickening of martensite laths is apparently influenced by local austenite states, resulting in the changes in orientation, morphology as well as substructure of martensite lath. The kinetics of isothermal martensite transformation is controlled by intedece dislocation determined nucleation of martensite in primary stage, but to a larger extent, by the austenite accommodation for the shape strain of martensite in the thickening Stage展开更多
The phase transformation from the high temperature tetragonal phase to the low temperature monoclinic phase of zirconia had been long considered to be a typical athermal martensitic transformation until it was recentl...The phase transformation from the high temperature tetragonal phase to the low temperature monoclinic phase of zirconia had been long considered to be a typical athermal martensitic transformation until it was recently identified to be a fast isothermal transformation. The isothermal nature becomes more apparent when a stabilizing oxide, such as yttria, is doped, by which the transformation temperature is reduced and accordingly the transformation rate becomes low. Thus it becomes easy to experimentally establish a C-curve nature in a TTT (Time-Temperature-Transformation) diagram. The C-curve approaches that of well known isothermal transformation of Y-TZP (Yttria Doped Tetragonal Zirconia Polycrystals), which typically contains 3mol% of Y2O3.In principle, an isothermal transformation can be suppressed by a rapid cooling so that the cooling curve avoids intersecting the C-curve in TTT diagram. Y-TZP is the case, where the stability of the metastable tetragonal phase is relatively high and thus the tetragonal phase persists even at the liquid nitrogen temperature. On the other hand, the high temperature tetragonal phase of pure zirconia can never be quenched-in at room temperature by a rapid cooling; instead it always turns into monoclinic phase at room temperature. This suggests the occurrence of an athermal transformation after escaping the isothermal transformation, provided the cooling rate was fast enough to suppress the isothermal transformation. Thus, with an intermediate yttria composition, it would be possible to obtain the tetragonal phase which is not only metastable at room temperature but athermally transforms into the monoclinic phase by subzero cooling. The objective of the present work is to show that, with a certain range of yttria content, the tetragonal phase can be quenched in at room temperature and undergoes isothermal transformation and athermal transformation depending on being heated at a moderate temperature or under-cooled below room temperature. Because both of the product phases are essentially the same monoclinic phase, both transformations are regarded as martensitic transformation, i.e. isothermal and athermal martensite. In some steels such as Fe-Mn-Ni and Fe-Ni-C, the occurrence of both isothermal and athermal martensitic transformations has been reported. However, in these cases, the isothermal transformation occurs at temperatures slightly above the Ms (Martensite start) temperatures, and thus these transformations are considered to conform the same C-curve. On the other hand, the Ms temperature of the present material is well below the C-curve, which suggests that completely different mechanisms are controlling the kinetics of these two modes of transformations. Other aspects on these transformations are also to be reported..展开更多
In order to understand the thermodynamic properties of deformed AZ91D alloy during isothermal holding, the microstructure characteristics and transformation were investigated. The results present that deformation main...In order to understand the thermodynamic properties of deformed AZ91D alloy during isothermal holding, the microstructure characteristics and transformation were investigated. The results present that deformation mainly concentrates on the edge of the chips and billets, especially at the interface of α/β. Microstructure transformation mechanism of deformed AZ91D during holding mainly includes recrystallization, spheroidization and Ostwald ripening. The mechanism was then thermodynamically analyzed. During the heating and isothermal holding process, recrystallization driven by residual energy within the deformed AZ91D alloy, spheroidization and Ostwald ripening induced by the reduction of interfacial energy, will inevitably and continuously occur with the extension of heating and holding.展开更多
An effective method was proposed to establish the continuous cooling transformation(CCT) diagrams of aluminum alloys using in situ voltage measurement.The voltage change of samples with predefined dimension was reco...An effective method was proposed to establish the continuous cooling transformation(CCT) diagrams of aluminum alloys using in situ voltage measurement.The voltage change of samples with predefined dimension was recorded under the constant current state during continuous cooling.Solutionizing time,together with starting and finishing temperatures of phase transformation of the alloy can be obtained from relationships of voltage vs time and temperature.A critical cooling rate without detectable phase transition during continuous cooling can be determined.Continuous cooling transformation diagrams of tested samples can be established conveniently based on these results.Microstructure observation and differential scanning calorimetry(DSC) testing were applied to verify the reliability of continuous cooling transformation diagram.展开更多
A time-resolved x-ray diffraction technique is employed to monitor the structural transformation of laser-shocked bismuth.Results reveal a retarded transformation from the shock-induced Bi-Ⅴphase to a metastable Bi-...A time-resolved x-ray diffraction technique is employed to monitor the structural transformation of laser-shocked bismuth.Results reveal a retarded transformation from the shock-induced Bi-Ⅴphase to a metastable Bi-Ⅳphase during the shock release,instead of the thermodynamically stable Bi-Ⅲphase.The emergence of the metastable Bi-Ⅳphase is understood by the competitive interplay between two transformation pathways towards the Bi-Ⅳand Bi-Ⅲ,respectively.The former is more rapid than the latter because the Bi-Ⅴto B-Ⅳtransformation is driven by interaction between the closest atoms while the Bi-Ⅴto B-Ⅲtransformation requires interaction between the second-closest atoms.The nucleation time for the Bi-Ⅴto Bi-Ⅳtransformation is determined to be 5.1±0.9 ns according to a classical nucleation model.This observation demonstrates the importance of the formation of the transient metastable phases,which can change the phase transformation pathway in a dynamic process.展开更多
In this paper,by using the G_(m,1)~(1,1)-system,we study Darboux transformations for space-like isothermic surfaces in Minkowski space R~(m,1),where G_(m,1)~(1,1)=O(m+1,2)/O(m,1)×O(1,1).
The 410℃ isothermal section of the phase diagram of Al-Cu-Sb ternary system has been de- termined by means of X-ray powder diffraction method and electron probe microanalysis. The section determined consists of 12 si...The 410℃ isothermal section of the phase diagram of Al-Cu-Sb ternary system has been de- termined by means of X-ray powder diffraction method and electron probe microanalysis. The section determined consists of 12 single-phase regions,21 bi-phase regions and 10 tri-phase regions.展开更多
The microstructures of both as-cast and homogenized Nd-Fe-B ternary alloys have been studied. The stable phase regions existing in Nd-Fe-B ternary system at room temperature have been established by the microzone comp...The microstructures of both as-cast and homogenized Nd-Fe-B ternary alloys have been studied. The stable phase regions existing in Nd-Fe-B ternary system at room temperature have been established by the microzone composition analysis and the phase identification. Based on the obtained results, an isothermal section of Nd-Fe-B ternary system at room temperature was drawn.展开更多
The isothermal section of the Ag-Cu-Ce ternary phase diagram at 500℃ containing 0~34 at% Ce have been determined by X-ray diffraction analysis and optical microscopy.It was found that Cu_2Ce-Ag_2Ce pseudo-binary sys...The isothermal section of the Ag-Cu-Ce ternary phase diagram at 500℃ containing 0~34 at% Ce have been determined by X-ray diffraction analysis and optical microscopy.It was found that Cu_2Ce-Ag_2Ce pseudo-binary system is characterized by having complete solid solubility at 500℃ and that the solid solubility of silver in Cu_5Ce is up to 41 at% at 500℃.The section consists of eight single phase re- gions,thirteen bi-phase regions and six tri-phase regions.展开更多
The isothermal section of the phase diagram of the ternary system Co Dy Pr at 500℃ was investigated by X ray diffraction analysis, optical microscopy, electron microscopy, electron spectrum and electron probe misc...The isothermal section of the phase diagram of the ternary system Co Dy Pr at 500℃ was investigated by X ray diffraction analysis, optical microscopy, electron microscopy, electron spectrum and electron probe miscroanalysis techniques. The section consists of seventeen single phase regions, twenty eight two phase regions and twelve three phase regions. Three of single phase regions are the solid continuums and three of single phase regions are the wide limit solid solutions. No ternary compound was observed in this system.展开更多
The isothermal phase diagram of the Cu2O-Al2O3-SiO2 ternary system at 1150℃ was reported for the samples which were prepared from sol-gel method and quenched by water after being heated at 1150℃ for 12 h. Based on t...The isothermal phase diagram of the Cu2O-Al2O3-SiO2 ternary system at 1150℃ was reported for the samples which were prepared from sol-gel method and quenched by water after being heated at 1150℃ for 12 h. Based on the conventional X-ray powder diffraction (XRD) and in situ high-temperature XRD quantitative analysis,in addition to scanning electron microscopy measurement,the phase identification was achieved. Combining the deduction from the component phase diagrams of the binary systems using the phase equilibrium theorem,the primary isothermal phase diagram was plotted over the composition area Cu2O-mullite-SiO2. In this area,the approximate composition areas of two two-phase regions and one three-phase region,(L2+Cr),(L2+M),and (L1+L2+Tr),were determined. Moreover,the precise composition areas of both of the three-phase regions (L2+Cr+M) and (L2+M+A) were determined according to the results of conventional and in situ high-temperature XRD quantitative analysis by Rietveld method.展开更多
The room temperature phase diagram of Al-Zn-Cu system is the important basis for judging the phase constituents of the materials at the usage condition. New results about the room temperature phase diagram of the low ...The room temperature phase diagram of Al-Zn-Cu system is the important basis for judging the phase constituents of the materials at the usage condition. New results about the room temperature phase diagram of the low copper side in the Al-Zn-Cu systems have been shown in this study. Miscibility gap of fcc phase in the Al-Zn-Cu system has also been studied by experimental diffusion-couple method and thermodynamic calculation. Properties of this miscibility gap have been known. It is practically significant for the study on the aging behavior and for the control of the microstructure and properties of the Al alloys with Zn and Cu element.展开更多
The formation and evolution characteristics of bcc phase during the isothermal relaxation processes for supercooled-liquid and amorphous Pb were investigated by molecular dynamics simulation and cluster-type index met...The formation and evolution characteristics of bcc phase during the isothermal relaxation processes for supercooled-liquid and amorphous Pb were investigated by molecular dynamics simulation and cluster-type index method (CTIM). It is found that during the relaxation process, the formation and evolution of bcc phase are closely dependent on the initial temperature and structure. During the simulation time scale, when the initial temperature is in the range of supercooled liquid region, the bcc phase can be formed and kept a long time; while it is in the range of glassy region, the bcc phase can be formed at first and then partially transformed into hcp phase; when it decreases to the lower one, the hcp and fcc phases can be directly transformed from the glassy structure without undergoing the metastable bcc phase. The Ostwald's "step rule" is impactful during the isothermal relaxation process of the supercooled and glassy Pb, and the metastable bcc phase plays an important role in the precursor of crystallization.展开更多
An isothermal section of the Mg-Nd-Gd ternary system at 723 K was established by diffusion triple technique and electron probe microanalysis (EPMA). Mg3Gd and Mg3Nd form a continuous solid solution (Gd,Nd)3Mg, and...An isothermal section of the Mg-Nd-Gd ternary system at 723 K was established by diffusion triple technique and electron probe microanalysis (EPMA). Mg3Gd and Mg3Nd form a continuous solid solution (Gd,Nd)3Mg, and a continuous solid solution (Gd,Nd)Mg is also formed between MgGd and MgNd. Mg7Gd, Mg5Gd, Mg2Gd, Mg41Nd5, (Gd,Nd)3Mg and (Gd,Nd)Mg are found in the ternary system. In these intermetallic phases, Mg7Gd has been reported to be a metastable phase in previous literatures. The solubilities of Mg, Gd and Nd in all the phases were detected. Furthermore, four three-phase equilibria, α(Mg)+Mg7Gd+Mg41Nd5, Mg7Gd+Mg5Gd+Mg41Nd5, Mg5Gd+Mg41Nd5+(Gd,Nd)3Mg and (Gd,Nd)3Mg+(Gd,Nd)Mg+Mg2Gd, were identified in the isothermal section.展开更多
The mechanical properties of transformation induced plasticity (TRIP) steel are strongly affected by the conditions of iso-thermal bainitic processing. The multiphase microstructure of TRIP steel under different con...The mechanical properties of transformation induced plasticity (TRIP) steel are strongly affected by the conditions of iso-thermal bainitic processing. The multiphase microstructure of TRIP steel under different conditions of isothermal bainitic processing was investigated using OM,SEM,XRD and TEM. The volume fraction of retained austenite and the carbon content in austenite were determined quantitatively using X-ray diffraction patterns. The relationship between mechanical properties and isothermal bainitic processing parameters was investigated. The stability of retained austenite was analyzed by the volume fraction of retained austenite and the carbon content in retained austenite. The experimental results show that the multiphase microstructure consists of ferrite,bainite and metastable retained austenite.To obtain good mechanical properties,the optimal conditions of isothermal bainitic temperature and holding time are 410-430°C and 180-240 s,respectively. After isothermal bainitic processing under the optimal conditions,the corresponding volume fraction of retained austenite is 5vol%-15vol%,which can provide enough retained austenite and plastic stability for austenite with high carbon content.展开更多
The isothermal section of the Er-Mn-Nd ternary system at 773 K was investigated mainly by X-ray powder diffraction with the aid of differential thermal analysis. The 773 K isothermal section of the ternary system cons...The isothermal section of the Er-Mn-Nd ternary system at 773 K was investigated mainly by X-ray powder diffraction with the aid of differential thermal analysis. The 773 K isothermal section of the ternary system consists of 9 single-phase regions, 14 two-phase regions, and 6 three-phase regions. At 773 K, the maximum solid solubility of Er in Nd and Nd in Er is about 20%(atom fraction) Er and 26%(atom fraction) Nd, respectively. Er6Mn23 and Nd6Mn23 form a continuous solid solution. The homogeneity range of δ phase extends from about 38% (atom fraction) Er to 43% (atom fraction) Er. No ternary compounds were observed at 773 K in this system.展开更多
文摘The effect of rare earth elements on the isothermal transformation and microstructures in 20Mn steel is in- vestigated by means of metallography and dilatometry.Rare earth elements decrease both the incubation period of pro-eutectoid ferrite and the rate of pearlitic transformation.In addition,rare earth elements play a role of reducing needle-like ferrite and the amount of pearlite,densifing the lamellar space of pearlite and enhcing segregation of carbide in granular bainite.It is suggested that rare earth elements may decrease the interfacial energy of grain boundary and interphase,hinder the diffusion of carbon atoms and form rare earth carbides with high melting point which reduce the carbon content in austenite.
文摘Martensitic transformation behavior was studied for zirconia containing 4%~10% CeO2 (in mole fraction) by using a dilatometric method. The Ms (Martensite start temperature) decreased near linearly with increasing CeO2. Different transformation modes were observed depending on the composition and cooling rate. ZrO2 containing 6% CeO2 showed isothermal transformation behavior, whereas ZrO2 containing 9% and 10% CeO2 showed athermal transformation behavior. However, ZrO2 containing 8% CeO2 showed either isothermal or athermal transformations behavior depending on the cooling rate. A TTT (Time-Temperature-Transformation) diagram was proposed for ZrO2 containing 8% CeO2.
文摘Electric resistivity measurements and X-ray diffraction analysis were performed to study the isothermal phase transformation in amorphous Au-Si ribbons with eutectic composition pre- pared using melt-spinning technique.A series of phase transformations take place spontaneously at room temperature and accelerate at elevated temperatures.Four stages of the transformation from amorphous state to the equilibrium state can be distinguished.Dis- cussion on the structural character of the metastable phases indicates that Hume-Rothery electron compounds and size factor compounds could form during isothermal aging.
文摘With electron microscopy the investigation on isothermal martensite transformation in an Fe20.5Ni-4.8Mn alloy has been carried out to clarify the effect of austenite state on the transformation, by applying pre-deformation to austenite before isothermal holding. Under the condition without pre-deformation, the isothermal martensite products are lath martensite with {111}fhabit planes. Dislocations in austenite seem to contribute to nucleation of martensite, and in this nascent Stage austenite substructure has no obvious effect on martensite growth. The consequent thickening of martensite laths is apparently influenced by local austenite states, resulting in the changes in orientation, morphology as well as substructure of martensite lath. The kinetics of isothermal martensite transformation is controlled by intedece dislocation determined nucleation of martensite in primary stage, but to a larger extent, by the austenite accommodation for the shape strain of martensite in the thickening Stage
文摘The phase transformation from the high temperature tetragonal phase to the low temperature monoclinic phase of zirconia had been long considered to be a typical athermal martensitic transformation until it was recently identified to be a fast isothermal transformation. The isothermal nature becomes more apparent when a stabilizing oxide, such as yttria, is doped, by which the transformation temperature is reduced and accordingly the transformation rate becomes low. Thus it becomes easy to experimentally establish a C-curve nature in a TTT (Time-Temperature-Transformation) diagram. The C-curve approaches that of well known isothermal transformation of Y-TZP (Yttria Doped Tetragonal Zirconia Polycrystals), which typically contains 3mol% of Y2O3.In principle, an isothermal transformation can be suppressed by a rapid cooling so that the cooling curve avoids intersecting the C-curve in TTT diagram. Y-TZP is the case, where the stability of the metastable tetragonal phase is relatively high and thus the tetragonal phase persists even at the liquid nitrogen temperature. On the other hand, the high temperature tetragonal phase of pure zirconia can never be quenched-in at room temperature by a rapid cooling; instead it always turns into monoclinic phase at room temperature. This suggests the occurrence of an athermal transformation after escaping the isothermal transformation, provided the cooling rate was fast enough to suppress the isothermal transformation. Thus, with an intermediate yttria composition, it would be possible to obtain the tetragonal phase which is not only metastable at room temperature but athermally transforms into the monoclinic phase by subzero cooling. The objective of the present work is to show that, with a certain range of yttria content, the tetragonal phase can be quenched in at room temperature and undergoes isothermal transformation and athermal transformation depending on being heated at a moderate temperature or under-cooled below room temperature. Because both of the product phases are essentially the same monoclinic phase, both transformations are regarded as martensitic transformation, i.e. isothermal and athermal martensite. In some steels such as Fe-Mn-Ni and Fe-Ni-C, the occurrence of both isothermal and athermal martensitic transformations has been reported. However, in these cases, the isothermal transformation occurs at temperatures slightly above the Ms (Martensite start) temperatures, and thus these transformations are considered to conform the same C-curve. On the other hand, the Ms temperature of the present material is well below the C-curve, which suggests that completely different mechanisms are controlling the kinetics of these two modes of transformations. Other aspects on these transformations are also to be reported..
基金Projects(2006BA104B04-1, 2006BAE04B07-3) supported by the National Science and Technology Supporting Program of China
文摘In order to understand the thermodynamic properties of deformed AZ91D alloy during isothermal holding, the microstructure characteristics and transformation were investigated. The results present that deformation mainly concentrates on the edge of the chips and billets, especially at the interface of α/β. Microstructure transformation mechanism of deformed AZ91D during holding mainly includes recrystallization, spheroidization and Ostwald ripening. The mechanism was then thermodynamically analyzed. During the heating and isothermal holding process, recrystallization driven by residual energy within the deformed AZ91D alloy, spheroidization and Ostwald ripening induced by the reduction of interfacial energy, will inevitably and continuously occur with the extension of heating and holding.
文摘An effective method was proposed to establish the continuous cooling transformation(CCT) diagrams of aluminum alloys using in situ voltage measurement.The voltage change of samples with predefined dimension was recorded under the constant current state during continuous cooling.Solutionizing time,together with starting and finishing temperatures of phase transformation of the alloy can be obtained from relationships of voltage vs time and temperature.A critical cooling rate without detectable phase transition during continuous cooling can be determined.Continuous cooling transformation diagrams of tested samples can be established conveniently based on these results.Microstructure observation and differential scanning calorimetry(DSC) testing were applied to verify the reliability of continuous cooling transformation diagram.
基金supported by the National Natural Science Foundation of China (Grant No.12072331)the Science Challenge Project (Grant No.TZ2018001)+2 种基金the Japan Society for the Promotion of Science (Grant Nos.17H04820 and 21H01677)the Foundation of the United Laboratory of High-Pressure Physics and Earthquake Scienceperformed under the approval of the Photon Factory Program Advisory Committee (Proposal Nos.2016S2-006 and 2020G680)。
文摘A time-resolved x-ray diffraction technique is employed to monitor the structural transformation of laser-shocked bismuth.Results reveal a retarded transformation from the shock-induced Bi-Ⅴphase to a metastable Bi-Ⅳphase during the shock release,instead of the thermodynamically stable Bi-Ⅲphase.The emergence of the metastable Bi-Ⅳphase is understood by the competitive interplay between two transformation pathways towards the Bi-Ⅳand Bi-Ⅲ,respectively.The former is more rapid than the latter because the Bi-Ⅴto B-Ⅳtransformation is driven by interaction between the closest atoms while the Bi-Ⅴto B-Ⅲtransformation requires interaction between the second-closest atoms.The nucleation time for the Bi-Ⅴto Bi-Ⅳtransformation is determined to be 5.1±0.9 ns according to a classical nucleation model.This observation demonstrates the importance of the formation of the transient metastable phases,which can change the phase transformation pathway in a dynamic process.
文摘In this paper,by using the G_(m,1)~(1,1)-system,we study Darboux transformations for space-like isothermic surfaces in Minkowski space R~(m,1),where G_(m,1)~(1,1)=O(m+1,2)/O(m,1)×O(1,1).
文摘The 410℃ isothermal section of the phase diagram of Al-Cu-Sb ternary system has been de- termined by means of X-ray powder diffraction method and electron probe microanalysis. The section determined consists of 12 single-phase regions,21 bi-phase regions and 10 tri-phase regions.
文摘The microstructures of both as-cast and homogenized Nd-Fe-B ternary alloys have been studied. The stable phase regions existing in Nd-Fe-B ternary system at room temperature have been established by the microzone composition analysis and the phase identification. Based on the obtained results, an isothermal section of Nd-Fe-B ternary system at room temperature was drawn.
基金The project supported by the National Natural Science Foundation of China
文摘The isothermal section of the Ag-Cu-Ce ternary phase diagram at 500℃ containing 0~34 at% Ce have been determined by X-ray diffraction analysis and optical microscopy.It was found that Cu_2Ce-Ag_2Ce pseudo-binary system is characterized by having complete solid solubility at 500℃ and that the solid solubility of silver in Cu_5Ce is up to 41 at% at 500℃.The section consists of eight single phase re- gions,thirteen bi-phase regions and six tri-phase regions.
文摘The isothermal section of the phase diagram of the ternary system Co Dy Pr at 500℃ was investigated by X ray diffraction analysis, optical microscopy, electron microscopy, electron spectrum and electron probe miscroanalysis techniques. The section consists of seventeen single phase regions, twenty eight two phase regions and twelve three phase regions. Three of single phase regions are the solid continuums and three of single phase regions are the wide limit solid solutions. No ternary compound was observed in this system.
基金the National Natural Science Foundation of China (No. 20471010)the Scien-tific Research Fund of Hunan Provincial Education Department (No. 05c173).
文摘The isothermal phase diagram of the Cu2O-Al2O3-SiO2 ternary system at 1150℃ was reported for the samples which were prepared from sol-gel method and quenched by water after being heated at 1150℃ for 12 h. Based on the conventional X-ray powder diffraction (XRD) and in situ high-temperature XRD quantitative analysis,in addition to scanning electron microscopy measurement,the phase identification was achieved. Combining the deduction from the component phase diagrams of the binary systems using the phase equilibrium theorem,the primary isothermal phase diagram was plotted over the composition area Cu2O-mullite-SiO2. In this area,the approximate composition areas of two two-phase regions and one three-phase region,(L2+Cr),(L2+M),and (L1+L2+Tr),were determined. Moreover,the precise composition areas of both of the three-phase regions (L2+Cr+M) and (L2+M+A) were determined according to the results of conventional and in situ high-temperature XRD quantitative analysis by Rietveld method.
文摘The room temperature phase diagram of Al-Zn-Cu system is the important basis for judging the phase constituents of the materials at the usage condition. New results about the room temperature phase diagram of the low copper side in the Al-Zn-Cu systems have been shown in this study. Miscibility gap of fcc phase in the Al-Zn-Cu system has also been studied by experimental diffusion-couple method and thermodynamic calculation. Properties of this miscibility gap have been known. It is practically significant for the study on the aging behavior and for the control of the microstructure and properties of the Al alloys with Zn and Cu element.
基金Projects (50831003, 50571037) supported by the National Natural Science Foundation of China
文摘The formation and evolution characteristics of bcc phase during the isothermal relaxation processes for supercooled-liquid and amorphous Pb were investigated by molecular dynamics simulation and cluster-type index method (CTIM). It is found that during the relaxation process, the formation and evolution of bcc phase are closely dependent on the initial temperature and structure. During the simulation time scale, when the initial temperature is in the range of supercooled liquid region, the bcc phase can be formed and kept a long time; while it is in the range of glassy region, the bcc phase can be formed at first and then partially transformed into hcp phase; when it decreases to the lower one, the hcp and fcc phases can be directly transformed from the glassy structure without undergoing the metastable bcc phase. The Ostwald's "step rule" is impactful during the isothermal relaxation process of the supercooled and glassy Pb, and the metastable bcc phase plays an important role in the precursor of crystallization.
基金Projects(50731002,50971136)supported by the National Natural Science Foundation of China
文摘An isothermal section of the Mg-Nd-Gd ternary system at 723 K was established by diffusion triple technique and electron probe microanalysis (EPMA). Mg3Gd and Mg3Nd form a continuous solid solution (Gd,Nd)3Mg, and a continuous solid solution (Gd,Nd)Mg is also formed between MgGd and MgNd. Mg7Gd, Mg5Gd, Mg2Gd, Mg41Nd5, (Gd,Nd)3Mg and (Gd,Nd)Mg are found in the ternary system. In these intermetallic phases, Mg7Gd has been reported to be a metastable phase in previous literatures. The solubilities of Mg, Gd and Nd in all the phases were detected. Furthermore, four three-phase equilibria, α(Mg)+Mg7Gd+Mg41Nd5, Mg7Gd+Mg5Gd+Mg41Nd5, Mg5Gd+Mg41Nd5+(Gd,Nd)3Mg and (Gd,Nd)3Mg+(Gd,Nd)Mg+Mg2Gd, were identified in the isothermal section.
文摘The mechanical properties of transformation induced plasticity (TRIP) steel are strongly affected by the conditions of iso-thermal bainitic processing. The multiphase microstructure of TRIP steel under different conditions of isothermal bainitic processing was investigated using OM,SEM,XRD and TEM. The volume fraction of retained austenite and the carbon content in austenite were determined quantitatively using X-ray diffraction patterns. The relationship between mechanical properties and isothermal bainitic processing parameters was investigated. The stability of retained austenite was analyzed by the volume fraction of retained austenite and the carbon content in retained austenite. The experimental results show that the multiphase microstructure consists of ferrite,bainite and metastable retained austenite.To obtain good mechanical properties,the optimal conditions of isothermal bainitic temperature and holding time are 410-430°C and 180-240 s,respectively. After isothermal bainitic processing under the optimal conditions,the corresponding volume fraction of retained austenite is 5vol%-15vol%,which can provide enough retained austenite and plastic stability for austenite with high carbon content.
基金Project supported bythe National Natural Science Foundation of China (50471108)
文摘The isothermal section of the Er-Mn-Nd ternary system at 773 K was investigated mainly by X-ray powder diffraction with the aid of differential thermal analysis. The 773 K isothermal section of the ternary system consists of 9 single-phase regions, 14 two-phase regions, and 6 three-phase regions. At 773 K, the maximum solid solubility of Er in Nd and Nd in Er is about 20%(atom fraction) Er and 26%(atom fraction) Nd, respectively. Er6Mn23 and Nd6Mn23 form a continuous solid solution. The homogeneity range of δ phase extends from about 38% (atom fraction) Er to 43% (atom fraction) Er. No ternary compounds were observed at 773 K in this system.