To investigate the radiative divertor behavior and physics for the scenario of impurity seeded plasma in ITER, the radiative divertor experiments with argon(Ar) seeding under ITER-like tungsten divertor condition we...To investigate the radiative divertor behavior and physics for the scenario of impurity seeded plasma in ITER, the radiative divertor experiments with argon(Ar) seeding under ITER-like tungsten divertor condition were carried out during recent EAST campaigns. The experimental results reveal the high efficiency of reducing heat load and particle flux onto the divertor targets owing to increased radiation by Ar seeding. We achieve detached plasmas in these experiments. The inner–outer divertor asymmetry reduces after Ar seeding. Impurities, such as Ar, C, Li, and W, exist in the entire space of the vacuum chamber during EAST operations, and play important roles in power exhausting and accelerating the plasma detachment process. It is remarkable that the contamination of the core plasma is observed using Ar seeding owing to the sputtering of plasma facing components(PFCs), particularly when Ar impurity is injected from the upper tungsten divertor.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11575242,11575243,11505233,11575247,and 11605238)the National Magnetic Confinement Fusion Science Program(Grant Nos.2013GB105002 and 2013GB105001)
文摘To investigate the radiative divertor behavior and physics for the scenario of impurity seeded plasma in ITER, the radiative divertor experiments with argon(Ar) seeding under ITER-like tungsten divertor condition were carried out during recent EAST campaigns. The experimental results reveal the high efficiency of reducing heat load and particle flux onto the divertor targets owing to increased radiation by Ar seeding. We achieve detached plasmas in these experiments. The inner–outer divertor asymmetry reduces after Ar seeding. Impurities, such as Ar, C, Li, and W, exist in the entire space of the vacuum chamber during EAST operations, and play important roles in power exhausting and accelerating the plasma detachment process. It is remarkable that the contamination of the core plasma is observed using Ar seeding owing to the sputtering of plasma facing components(PFCs), particularly when Ar impurity is injected from the upper tungsten divertor.