The upper vertical stability (VS) feeder is a part connected to the upper VS coil by a welding joint. The function of the feeder is to transfer current and coolant water to the VS coil. A giant electron^agnetic forc...The upper vertical stability (VS) feeder is a part connected to the upper VS coil by a welding joint. The function of the feeder is to transfer current and coolant water to the VS coil. A giant electron^agnetic force will be generated during normal operation by the current flowing in the VS coils, interacting with the external background field. The Lorentz force will induce Tresca stress in the feeder. The amplitudes of the magnetic field and Lorentz force along the conductor running direction have been calculated based on Maxwell's equations. To extract the Tresca stress in the feeder, a finite element model was created using the software ANSYS and an electromagnetic load was applied on the model. According to the analytical design, the stresses were classified and evaluated based on ASME. In order to reduce the Tresca stress, some optimization works have been done and the Tresca stress has had a significant reduction in the optimized model. This analytical work figured out the stress distribution in the feeder and checked the feasibility of the prototype design model. The ANSYS analysis results will provide a guidance for later improvement and fabrication.展开更多
The International Thermonuclear Experimental Reactor (ITER) feeder procurement is now well underway. The feeder design has been improved by the feeder teams at the ITER Organization (IO) and the Institute of Plasm...The International Thermonuclear Experimental Reactor (ITER) feeder procurement is now well underway. The feeder design has been improved by the feeder teams at the ITER Organization (IO) and the Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP) in the last 2 years along with analyses and qualification activities. The feeder design is being progressively finalized. In addition, the preparation of qualification and manufacturing are well scheduled at ASIPP. This paper mainly presents the design, the overview of manufacturing and the status of integration on the ITER magnet feeders.展开更多
An electromagnetic (EM) analytic model for the PF feeder, applied to ITER and needed to convey the cryogenic supply and electrical power to the PF magnets, was built up. The magnetic flux density and the EM force un...An electromagnetic (EM) analytic model for the PF feeder, applied to ITER and needed to convey the cryogenic supply and electrical power to the PF magnets, was built up. The magnetic flux density and the EM force under the worst conditions with the maximum working current in each coil were then calculated. Based on the EM analysis and theoretical calculation, the relationship between the busbar stress and the distance of neighbouring busbar supports was obtained, which provides an approach to optimize the design of the busbar supports. In order to check the feasibility of the PF feeder structure, a finite element model was built up and the ANSYS code was applied to analyze the stress and displacement. The numerical results show that the stress of the PF feeder is within the allowable limits and the structure is feasible.展开更多
This paper presents the evolution of the design of cold mass support for the ITER magnet feeder system. The glass fibers in the cylinder and the flanges of the normal G10 support are discontinuous in the preliminary d...This paper presents the evolution of the design of cold mass support for the ITER magnet feeder system. The glass fibers in the cylinder and the flanges of the normal G10 support are discontinuous in the preliminary design. The heat load of this support from the analysis is only 4.86 W. However, the mechanical test of the prototype showed that it can only endure 9 kN lateral force, which is significantly less than the required 20 kN. So, the configuration of the glass fibers in the cylinders and flanges of this G10 support are modified by changing it to a continuous and knitted type to reinforce the support, and then a new improved prototype is manufactured and tested. It could endure 15'kN lateral forces this time, but still not meet the required 20 kN. Finally, the SS316LN material is chosen for the cold mass supports. The analysis results show that it is safe under 20 kN lateral forces with the heat load increased to 14.8 W. Considering the practical application, the requirements of strength is of primary importance. So, this SS316LN cold mass support is acceptable for the ITER magnet feeder system. On the other hand, the design idea of using continuous and knitted glass fibers to reinforce the strength of a G10 support is a good reference for the case with a lower heat load and not too high Lorentz force.展开更多
In the International Thermonuclear Experimental Reactor(ITER) project,the feeders are one of the most important and critical systems.To convey the power supply and the coolant for the central solenoid(CS) magnet,6...In the International Thermonuclear Experimental Reactor(ITER) project,the feeders are one of the most important and critical systems.To convey the power supply and the coolant for the central solenoid(CS) magnet,6 sets of CS feeders are employed,which consist mainly of an in-cryostat feeder(ICF),a cryostat feed-through(CFT),an S-bend box(SBB),and a coil terminal box(CTB).To compensate the displacements of the internal components of the CS feeders during operation,sliding cold mass supports consisting of a sled plate,a cylindrical support,a thermal shield,and an external ring are developed.To check the strength of the developed cold mass supports of the CS3U feeder,electromagnetic analysis of the two superconducting busbars is performed by using the CATIA V5 and ANSYS codes based on parametric technology.Furthermore, the thermal-structural coupling analysis is performed based on the obtained results,except for the stress concentration,and the max.stress intensity is lower than the allowable stress of the selected material.It is found that the conceptual design of the cold mass support can satisfy the required functions under the worst case of normal working conditions.All these performed activities will provide a firm technical basis for the engineering design and development of cold mass supports.展开更多
文摘The upper vertical stability (VS) feeder is a part connected to the upper VS coil by a welding joint. The function of the feeder is to transfer current and coolant water to the VS coil. A giant electron^agnetic force will be generated during normal operation by the current flowing in the VS coils, interacting with the external background field. The Lorentz force will induce Tresca stress in the feeder. The amplitudes of the magnetic field and Lorentz force along the conductor running direction have been calculated based on Maxwell's equations. To extract the Tresca stress in the feeder, a finite element model was created using the software ANSYS and an electromagnetic load was applied on the model. According to the analytical design, the stresses were classified and evaluated based on ASME. In order to reduce the Tresca stress, some optimization works have been done and the Tresca stress has had a significant reduction in the optimized model. This analytical work figured out the stress distribution in the feeder and checked the feasibility of the prototype design model. The ANSYS analysis results will provide a guidance for later improvement and fabrication.
基金supported by the National Special Support for R&D on Science and Technology for ITER(Ministry of Public Security of the People's Republic of China-MPS)(No.2008GB102000)
文摘The International Thermonuclear Experimental Reactor (ITER) feeder procurement is now well underway. The feeder design has been improved by the feeder teams at the ITER Organization (IO) and the Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP) in the last 2 years along with analyses and qualification activities. The feeder design is being progressively finalized. In addition, the preparation of qualification and manufacturing are well scheduled at ASIPP. This paper mainly presents the design, the overview of manufacturing and the status of integration on the ITER magnet feeders.
文摘An electromagnetic (EM) analytic model for the PF feeder, applied to ITER and needed to convey the cryogenic supply and electrical power to the PF magnets, was built up. The magnetic flux density and the EM force under the worst conditions with the maximum working current in each coil were then calculated. Based on the EM analysis and theoretical calculation, the relationship between the busbar stress and the distance of neighbouring busbar supports was obtained, which provides an approach to optimize the design of the busbar supports. In order to check the feasibility of the PF feeder structure, a finite element model was built up and the ANSYS code was applied to analyze the stress and displacement. The numerical results show that the stress of the PF feeder is within the allowable limits and the structure is feasible.
基金supported by ITER IO, the National Basic Research Program of China (973 Program, No. 2008CB717906)the National Special Support for R&D on Science and Technology for ITER (No. 2008GB102000)
文摘This paper presents the evolution of the design of cold mass support for the ITER magnet feeder system. The glass fibers in the cylinder and the flanges of the normal G10 support are discontinuous in the preliminary design. The heat load of this support from the analysis is only 4.86 W. However, the mechanical test of the prototype showed that it can only endure 9 kN lateral force, which is significantly less than the required 20 kN. So, the configuration of the glass fibers in the cylinders and flanges of this G10 support are modified by changing it to a continuous and knitted type to reinforce the support, and then a new improved prototype is manufactured and tested. It could endure 15'kN lateral forces this time, but still not meet the required 20 kN. Finally, the SS316LN material is chosen for the cold mass supports. The analysis results show that it is safe under 20 kN lateral forces with the heat load increased to 14.8 W. Considering the practical application, the requirements of strength is of primary importance. So, this SS316LN cold mass support is acceptable for the ITER magnet feeder system. On the other hand, the design idea of using continuous and knitted glass fibers to reinforce the strength of a G10 support is a good reference for the case with a lower heat load and not too high Lorentz force.
基金support by National Basic Research Program of China(973 Program)(No.2008CB717900)the Special Fund of ITER Project of China(No.2008GB102000)+2 种基金the Special Fund of Talent Development of Anhui Province of China(No.2009Z056)the Research Fund for the Doctoral Program of Anhui University of Architecture(No.K02425)the Fund of Anhui Educational Committee of China (No.KJ2013A072)
文摘In the International Thermonuclear Experimental Reactor(ITER) project,the feeders are one of the most important and critical systems.To convey the power supply and the coolant for the central solenoid(CS) magnet,6 sets of CS feeders are employed,which consist mainly of an in-cryostat feeder(ICF),a cryostat feed-through(CFT),an S-bend box(SBB),and a coil terminal box(CTB).To compensate the displacements of the internal components of the CS feeders during operation,sliding cold mass supports consisting of a sled plate,a cylindrical support,a thermal shield,and an external ring are developed.To check the strength of the developed cold mass supports of the CS3U feeder,electromagnetic analysis of the two superconducting busbars is performed by using the CATIA V5 and ANSYS codes based on parametric technology.Furthermore, the thermal-structural coupling analysis is performed based on the obtained results,except for the stress concentration,and the max.stress intensity is lower than the allowable stress of the selected material.It is found that the conceptual design of the cold mass support can satisfy the required functions under the worst case of normal working conditions.All these performed activities will provide a firm technical basis for the engineering design and development of cold mass supports.