Retinitis pigmentosa is a group of inherited diseases that lead to retinal degeneration and photoreceptor cell death.However,there is no effective treatment for retinitis pigmentosa caused by PDE6B mutation.Adeno-asso...Retinitis pigmentosa is a group of inherited diseases that lead to retinal degeneration and photoreceptor cell death.However,there is no effective treatment for retinitis pigmentosa caused by PDE6B mutation.Adeno-associated virus(AAV)-mediated gene therapy is a promising strategy for treating retinitis pigmentosa.The aim of this study was to explore the molecular mechanisms by which AAV2-PDE6B rescues retinal function.To do this,we injected retinal degeneration 10(rd10)mice subretinally with AAV2-PDE6B and assessed the therapeutic effects on retinal function and structure using dark-and light-adapted electroretinogram,optical coherence tomography,and immunofluorescence.Data-independent acquisition-mass spectrometry-based proteomic analysis was conducted to investigate protein expression levels and pathway enrichment,and the results from this analysis were verified by real-time polymerase chain reaction and western blotting.AAV2-PDE6B injection significantly upregulated PDE6βexpression,preserved electroretinogram responses,and preserved outer nuclear layer thickness in rd10 mice.Differentially expressed proteins between wild-type and rd10 mice were closely related to visual perception,and treating rd10 mice with AAV2-PDE6B restored differentially expressed protein expression to levels similar to those seen in wild-type mice.Kyoto Encyclopedia of Genes and Genome analysis showed that the differentially expressed proteins whose expression was most significantly altered by AAV2-PDE6B injection were enriched in phototransduction pathways.Furthermore,the phototransductionrelated proteins Pde6α,Rom1,Rho,Aldh1a1,and Rbp1 exhibited opposite expression patterns in rd10 mice with or without AAV2-PDE6B treatment.Finally,Bax/Bcl-2,p-ERK/ERK,and p-c-Fos/c-Fos expression levels decreased in rd10 mice following AAV2-PDE6B treatment.Our data suggest that AAV2-PDE6B-mediated gene therapy promotes phototransduction and inhibits apoptosis by inhibiting the ERK signaling pathway and upregulating Bcl-2/Bax expression in retinitis pigmentosa.展开更多
BACKGROUND Helicobacter pylori(H.pylori)infection is related to various extragastric diseases including type 2 diabetes mellitus(T2DM).However,the possible mechanisms connecting H.pylori infection and T2DM remain unkn...BACKGROUND Helicobacter pylori(H.pylori)infection is related to various extragastric diseases including type 2 diabetes mellitus(T2DM).However,the possible mechanisms connecting H.pylori infection and T2DM remain unknown.AIM To explore potential molecular connections between H.pylori infection and T2DM.METHODS We extracted gene expression arrays from three online datasets(GSE60427,GSE27411 and GSE115601).Differentially expressed genes(DEGs)commonly present in patients with H.pylori infection and T2DM were identified.Hub genes were validated using human gastric biopsy samples.Correlations between hub genes and immune cell infiltration,miRNAs,and transcription factors(TFs)were further analyzed.RESULTS A total of 67 DEGs were commonly presented in patients with H.pylori infection and T2DM.Five significantly upregulated hub genes,including TLR4,ITGAM,C5AR1,FCER1G,and FCGR2A,were finally identified,all of which are closely related to immune cell infiltration.The gene-miRNA analysis detected 13 miRNAs with at least two gene cross-links.TF-gene interaction networks showed that TLR4 was coregulated by 26 TFs,the largest number of TFs among the 5 hub genes.CONCLUSION We identified five hub genes that may have molecular connections between H.pylori infection and T2DM.This study provides new insights into the pathogenesis of H.pylori-induced onset of T2DM.展开更多
Dynamic nitrification and denitrification processes are affected by changes in soil redox conditions,and they play a vital role in regulating soil N_(2)O emissions in rice-based cultivation.It is imperative to underst...Dynamic nitrification and denitrification processes are affected by changes in soil redox conditions,and they play a vital role in regulating soil N_(2)O emissions in rice-based cultivation.It is imperative to understand the influences of different upland crop planting systems on soil N_(2)O emissions.In this study,we focused on two representative rotation systems in Central China:rapeseed–rice(RR)and wheat–rice(WR).We examined the biotic and abiotic processes underlying the impacts of these upland plantings on soil N_(2)O emissions.The results revealed that during the rapeseed-cultivated seasons in the RR rotation system,the average N_(2)O emissions were 1.24±0.20 and 0.81±0.11 kg N ha^(–1)for the first and second seasons,respectively.These values were comparable to the N_(2)O emissions observed during the first and second wheat-cultivated seasons in the WR rotation system(0.98±0.25 and 0.70±0.04 kg N ha^(–1),respectively).This suggests that upland cultivation has minimal impacts on soil N_(2)O emissions in the two rotation systems.Strong positive correlations were found between N_(2)O fluxes and soil ammonium(NH_(4)^(+)),nitrate(NO_(3)^(–)),microbial biomass nitrogen(MBN),and the ratio of soil dissolved organic carbon(DOC)to NO_(3)^(–)in both RR and WR rotation systems.Moreover,the presence of the AOA-amoA and nirK genes were positively associated with soil N_(2)O fluxes in the RR and WR systems,respectively.This implies that these genes may have different potential roles in facilitating microbial N_(2)O production in various upland plantation models.By using a structural equation model,we found that soil moisture,mineral N,MBN,and the AOA-amoA gene accounted for over 50%of the effects on N_(2)O emissions in the RR rotation system.In the WR rotation system,soil moisture,mineral N,MBN,and the AOA-amoA and nirK genes had a combined impact of over 70%on N_(2)O emissions.These findings demonstrate the interactive effects of functional genes and soil factors,including soil physical characteristics,available carbon and nitrogen,and their ratio,on soil N_(2)O emissions during upland cultivation seasons under rice-upland rotations.展开更多
Memory loss and dementia are major public health concerns with a substantial economic burden.Oxidative stress has been shown to play a crucial role in the pathophysiology of hippocampal damage-induced memory impairmen...Memory loss and dementia are major public health concerns with a substantial economic burden.Oxidative stress has been shown to play a crucial role in the pathophysiology of hippocampal damage-induced memory impairment.To investigate whether the antioxidant and anti-inflammatory compound vanillyla cetone(zingerone) can protect against hippocampal damage and memory loss induced by cadmium chloride(CdCl_(2)) administration in rats,we explo red the potential involvement of the nuclear factor erythroid 2-related factor 2(Nrf2) signaling pathway,which is known to modulate oxidative stress and inflammation.Sixty healt hy male Wistar rats were divided into five groups:vehicle-treated(control),vanillylacetone,CdCl_(2),vanillylacetone+ CdCl_(2),vanillylacetone+ CdCl_(2)+ brusatol(a selective pharmacological N rf2inhibitor) groups.Vanillylacetone effectively attenuated CdCl_(2)-induced damage in the dental gyrus of the hippocampus and improved the memory function assessed by the Morris Water Maze test.Additionally,vanillylacetone markedly decreased the hippocampal tissue levels of inflammatory biomarkers(interleukin-6,tumor necrosis factor-α,intracellular cell adhesive molecules) and apoptosis biomarkers(Bax and cleaved caspase-3).The control and CdCl_(2)-treated groups treated with va nillylacetone showed reduced generation of reactive oxygen species,decreased malondialdehyde levels,and increased superoxide dismutase and glutathione activities,along with significant elevation of nuclear Nrf2 mRNA and protein expression in hippocampal tissue.All the protective effects of vanillylacetone we re substantially blocked by the co-administration of brusatol(a selective N rf2 inhibitor).Va nillylacetone mitigated hippocampal damage and memory loss induced by CdCl_(2),at least in part, by activating the nuclear transcription factor Nrf2.Additionally,vanillylacetone exerted its potent antioxidant and antiinflammatory actions.展开更多
Introduction: Omicron is a highly divergent variant of concern (VOCs) of a severe acute respiratory syndrome SARS-CoV-2. It carries a high number of mutations in its spike protein hence;it is more transmissible in the...Introduction: Omicron is a highly divergent variant of concern (VOCs) of a severe acute respiratory syndrome SARS-CoV-2. It carries a high number of mutations in its spike protein hence;it is more transmissible in the community by immune evasion mechanisms. Due to mutation within S gene, most Omicron variants have reported S gene target failure (SGTF) with some commercially available PCR kits. Such diagnostic features can be used as markers to screen Omicron. However, Whole Genome Sequencing (WGS) is the only gold standard approach to confirm novel microorganisms at genetically level as similar mutations can also be found in other variants that are circulating at low frequencies worldwide. This Retrospective study is aimed to assess RT-PCR sensitivity in the detection of S gene target failure in comparison with whole genome sequencing to detect variants of Omicron. Methods: We have analysed retrospective data of SARS-CoV-2 positive RT-PCR samples for S gene target failure (SGTF) with TaqPath COVID-19 RT-PCR Combo Kit (ThermoFisher) and combined with sequencing technologies to study the emerged pattern of SARS-CoV-2 variants during third wave at the tertiary care centre, Surat. Results: From the first day of December 2021 till the end of February 2022, a total of 321,803 diagnostic RT-PCR tests for SARS-CoV-2 were performed, of which 20,566 positive cases were reported at our tertiary care centre with an average cumulative positivity of 6.39% over a period of three months. In the month of December 21 samples characterized by the SGTF (70/129) were suggestive of being infected by the Omicron variant and identified as Omicron (B.1.1.529 lineage) when sequence. In the month of January, we analysed a subset of samples (n = 618) with SGTF (24%) and without SGTF (76%) with Ct values Conclusions: During the COVID-19 pandemic, it took almost more than 15 days to diagnose infection and identify pathogen by sequencing technology. In contrast to that molecular assay provided quick identification with the help of SGTF phenomenon within 5 hours of duration. This strategy helps scientists and health policymakers for the quick isolation and identification of clusters. That ultimately results in a decreased transmission of pathogen among the community.展开更多
AIM:To find out the association of secreted protein acidic and rich in cysteine(SPARC)-related modular calcium binding 2(SMOC2)gene variants rs2255680 and rs13208776 with genotypic and phenotypic characteristics in bo...AIM:To find out the association of secreted protein acidic and rich in cysteine(SPARC)-related modular calcium binding 2(SMOC2)gene variants rs2255680 and rs13208776 with genotypic and phenotypic characteristics in both familial and non-familial primary open angle glaucoma(POAG)patients.METHODS:A total of 212 POAG patients,comprising 124 familial and 88 non-familial,were enrolled.For genotyping the SMOC2 variant rs2255680,amplification refractory mutation system(ARMS)-polymerase chain reaction(PCR)method and PCR-restriction fragment length polymorphism(PCR-RFLP)were utilized for analyzing rs13208776 variant.RESULTS:The mean age of familial POAG patients was 50.92±9.12y,with 78 males and 46 females.The mean age of non-familial POAG patients was 53.14±13.44y,with 52 males and 36 females.The SMOC2 gene variant rs13208776 showed the significant association with POAG between familial and non-familial groups.The homozygous G/G variant was frequent among non-familial(60.2%)whereas the heterozygous G/A variant was more frequent in familial POAG patients(46%).There were significant differences in G/A variant between familial and non-familial glaucoma patients,and the risk was decreased to 0.53-fold in non-familial glaucoma patients[odds ratio(OR):0.53;95%confidence interval(CI):0.29-0.94;P=0.033]in codominant model.The risk was further reduced to 0.49-fold(95%CI:0.28-0.86;P=0.012)in dominant model for non-familial patients.No significant association of SMOC2 gene variant rs2255680 between familial and non-familial glaucoma patients was found in our population.The haplotype analysis showed the decreased risk for TA[OR:0.48(95%CI:0.29-0.79);P=0.004]and an increased risk for TG[OR=2.28(95%CI:1.22-4.25);P=0.01]haplotypes.CONCLUSION:Current findings show significant association of SMOC2 gene variant rs13208776 with POAG between familial and non-familial Pakistani patients.展开更多
Chronic enteropathy associated with the SLCO2A1 gene(CEAS)is a complex gastroenterological condition characterized by multiple ulcers in the small intestine with chronic bleeding and protein loss.This review explores ...Chronic enteropathy associated with the SLCO2A1 gene(CEAS)is a complex gastroenterological condition characterized by multiple ulcers in the small intestine with chronic bleeding and protein loss.This review explores the potential mechanisms underlying the pathogenesis of CEAS,focusing on the role of SLCO2A1-encoded prostaglandin transporter OATP2A1 and its impact on prostaglandin E2(PGE2)levels.Studies have suggested that elevated PGE2 levels contribute to mucosal damage,inflammation,and disruption of the intestinal barrier.The effects of PGE2 on macrophage activation and Maxi-Cl channel functionality,as well as its interaction with nonsteroidal anti-inflammatory drugs play crucial roles in the progression of CEAS.Understanding the balance between its protective and pro-inflammatory effects and the complex interactions within the gastrointestinal tract can shed light on potential therapeutic targets for CEAS and guide the development of novel,targeted therapies.展开更多
BACKGROUND Colon cancer is acknowledged as one of the most common malignancies worldwide,ranking third in United States regarding incidence and mortality.Notably,approximately 40%of colon cancer cases harbor oncogenic...BACKGROUND Colon cancer is acknowledged as one of the most common malignancies worldwide,ranking third in United States regarding incidence and mortality.Notably,approximately 40%of colon cancer cases harbor oncogenic KRAS mutations,resulting in the continuous activation of epidermal growth factor receptor signaling.AIM To investigate the key pathogenic genes in KRAS mutant colon cancer holds considerable importance.METHODS Weighted gene co-expression network analysis,in combination with additional bioinformatics analysis,were conducted to screen the key factors driving the progression of KRAS mutant colon cancer.Meanwhile,various in vitro experiments were also conducted to explore the biological function of transglutaminase 2(TGM2).RESULTS Integrated analysis demonstrated that TGM2 acted as an independent prognostic factor for progression-free survival.Immunohistochemical analysis on tissue microarrays revealed that TGM2 was associated with an elevated probability of perineural invasion in patients with KRAS mutant colon cancer.Additionally,biological roles of the key gene TGM2 was also assessed,suggesting that the downregulation of TGM2 attenuated the proliferation,invasion,and migration of the KRAS mutant colon cancer cell line.CONCLUSION This study underscores the potential significance of TGM2 in the progression of KRAS mutant colon cancer.This insight not only offers a theoretical foundation for therapeutic approaches but also highlights the need for additional clinical trials and fundamental research to support our preliminary findings.展开更多
BACKGROUND In the medical and dental fields,there is a need for studies of new therapeutic approaches for the treatment of bone defects that cause extensive bone loss.Melatonin may be an important endogenous biologica...BACKGROUND In the medical and dental fields,there is a need for studies of new therapeutic approaches for the treatment of bone defects that cause extensive bone loss.Melatonin may be an important endogenous biological factor for bone remodeling,and growth factors may enhance the repair process.AIM To evaluate the gene expression of cytokines(IL-1β,IL-6,IL-10 and TNF-α),markers of osteoclastogenesis(RANK,RANKL and OPG)and MMPs(MMP-1,MMP-2,MMP-8 and MMP-13)from the treatment of melatonin associated with an osteogenic membrane and rhBMP-2 on the recovery of a bone injury.METHODS Sixty-four rats were used and divided into 9 experimental groups and were formed according to the treatment carried out in the region of the bone lesion,which varied between the combination of 1,10 and 100μmol/L of melatonin.Gene Expression analysis was performed using real time-PCR by reading the concentration of total RNA and reverse transcription.RESULTS There were differences between groups when compared with clot or scaffold control,and improvement with a higher concentration of melatonin or rhBMP-2.The combination melatonin(1μg)with 5μg of rhBMP-2,using the guided bone regeneration technique,demonstrated some effects,albeit mild,on bone repair of critical bone defects.CONCLUSION This indicates that the approach for administering these substances needs to be reassessed,with the goal of ensuring their direct application to the affected area.Therefore,future research must be carried out,seeking to produce materials with these ideal characteristics.展开更多
Background:Pancreatic ductal adenocarcinoma(PDAC)has a rich and complex tumor immune microenvironment(TIME).M2 macrophages are among the most extensively infiltrated immune cells in the TIME and are necessary for the g...Background:Pancreatic ductal adenocarcinoma(PDAC)has a rich and complex tumor immune microenvironment(TIME).M2 macrophages are among the most extensively infiltrated immune cells in the TIME and are necessary for the growth and migration of cancers.However,the mechanisms and targets mediating M2 macrophage infiltration in pancreatic cancer remain elusive.Methods:The M2 macrophage infiltration score of patients was assessed using the xCell algorithm.Using weighted gene co-expression network analysis(WGCNA),module genes associated with M2 macrophages were identified,and a predictive model was designed.The variations in immunological cell patterns,cancer mutations,and enrichment pathways between the cohorts with the high-and low-risk were examined.Additionally,the expression of FCGR3A and RNASE2,as well as their association with M2 macrophages were evaluated using the HPA,TNMplot,and GEPIA2 databases and verified by tissue immunofluorescence staining.Moreover,in vitro cell experiments were conducted,where FCGR3A was knocked down in pancreatic cancer cells using siRNA to analyze its effects on M2 macrophage infiltration,tumor proliferation,and metastasis.Results:The prognosis of patients in high-risk and low-risk groups was successfully distinguished using a prognostic risk score model of M2 macrophage-related genes(p=0.024).Between the high-and low-risk cohorts,there have been notable variations in immune cell infiltration patterns,tumor mutations,and biological functions.The risk score was linked to the manifestation of prevalent immunological checkpoints,immunological scores,and stroma values(all p<0.05).In vitro experiments and tissue immunofluorescence staining revealed that FCGR3A can promote the infiltration or polarization of M2 macrophages and enhance tumor proliferation and migration.Conclusions:In this study,an M2 macrophage-related pancreatic cancer risk score model was established,and found that FCGR3A was correlated with tumor formation,metastasis,and M2 macrophage infiltration.展开更多
[Objective] The aim of this study was to provide metabolic evidence for the analysis of the ecological and safety assessment of Pi-d2-transgenic rice.[Method] The main agronomic characters of Pi-d2-transgenic rice wer...[Objective] The aim of this study was to provide metabolic evidence for the analysis of the ecological and safety assessment of Pi-d2-transgenic rice.[Method] The main agronomic characters of Pi-d2-transgenic rice were observed in field experiment and the grain chemical characters and amino acid content were measured.[Results] Introduction of foreign gene Pi-d2 resulted in stably hereditable variation in agronomic characteristics in the descents.Most of the transgenic lines grew normally and orderly.Compared with the control(wild type plants),about half of transgenic plants showed an increased or reduced plant height.There was no observable difference between transgenic plants and controls in tiller number,length of panicle,panicles per plant,seed-setting rate and 1 000-grain weight.Total amino acid content in transgenic rice was reduced,while the starch content,GC and GT were not altered in comparison with the control.[Conclusion] Introduction of foreign gene Pi-d2 has remarkable influence on plant height,while little on grain chemical characters.展开更多
An approximately 800 bp cDNA ( Lhcb 2) encoding light_harvesting chlorophyll a/b_binding protein complex (type Ⅱ) was cloned from the seedling of pea ( Pisum sativum L.) with RT_PCR method. Southern blotting usi...An approximately 800 bp cDNA ( Lhcb 2) encoding light_harvesting chlorophyll a/b_binding protein complex (type Ⅱ) was cloned from the seedling of pea ( Pisum sativum L.) with RT_PCR method. Southern blotting using special probe demonstrated that there existed one copy of Lhcb 2 in pea genome. RT_PCR and Northern blotting revealed the expression of Lhcb 2 which was regulated by light in a time_dependent expression manner. The Lhcb 2 gene didn't express untill 2 h after irradiated with white light. Low temperature (4 ℃) also affected the Lhcb 2 gene by decreasing half of its expression under 25 ℃.展开更多
基金supported by the National Natural Science Foundation of China,Nos.82071008(to BL)and 82004001(to XJ)Medical Science and Technology Program of Health Commission of Henan Province,No.LHGJ20210072(to RQ)Science and Technology Department of Henan Province,No.212102310307(to XJ)。
文摘Retinitis pigmentosa is a group of inherited diseases that lead to retinal degeneration and photoreceptor cell death.However,there is no effective treatment for retinitis pigmentosa caused by PDE6B mutation.Adeno-associated virus(AAV)-mediated gene therapy is a promising strategy for treating retinitis pigmentosa.The aim of this study was to explore the molecular mechanisms by which AAV2-PDE6B rescues retinal function.To do this,we injected retinal degeneration 10(rd10)mice subretinally with AAV2-PDE6B and assessed the therapeutic effects on retinal function and structure using dark-and light-adapted electroretinogram,optical coherence tomography,and immunofluorescence.Data-independent acquisition-mass spectrometry-based proteomic analysis was conducted to investigate protein expression levels and pathway enrichment,and the results from this analysis were verified by real-time polymerase chain reaction and western blotting.AAV2-PDE6B injection significantly upregulated PDE6βexpression,preserved electroretinogram responses,and preserved outer nuclear layer thickness in rd10 mice.Differentially expressed proteins between wild-type and rd10 mice were closely related to visual perception,and treating rd10 mice with AAV2-PDE6B restored differentially expressed protein expression to levels similar to those seen in wild-type mice.Kyoto Encyclopedia of Genes and Genome analysis showed that the differentially expressed proteins whose expression was most significantly altered by AAV2-PDE6B injection were enriched in phototransduction pathways.Furthermore,the phototransductionrelated proteins Pde6α,Rom1,Rho,Aldh1a1,and Rbp1 exhibited opposite expression patterns in rd10 mice with or without AAV2-PDE6B treatment.Finally,Bax/Bcl-2,p-ERK/ERK,and p-c-Fos/c-Fos expression levels decreased in rd10 mice following AAV2-PDE6B treatment.Our data suggest that AAV2-PDE6B-mediated gene therapy promotes phototransduction and inhibits apoptosis by inhibiting the ERK signaling pathway and upregulating Bcl-2/Bax expression in retinitis pigmentosa.
基金Supported by National Natural Science Foundation of China,No.82100594.
文摘BACKGROUND Helicobacter pylori(H.pylori)infection is related to various extragastric diseases including type 2 diabetes mellitus(T2DM).However,the possible mechanisms connecting H.pylori infection and T2DM remain unknown.AIM To explore potential molecular connections between H.pylori infection and T2DM.METHODS We extracted gene expression arrays from three online datasets(GSE60427,GSE27411 and GSE115601).Differentially expressed genes(DEGs)commonly present in patients with H.pylori infection and T2DM were identified.Hub genes were validated using human gastric biopsy samples.Correlations between hub genes and immune cell infiltration,miRNAs,and transcription factors(TFs)were further analyzed.RESULTS A total of 67 DEGs were commonly presented in patients with H.pylori infection and T2DM.Five significantly upregulated hub genes,including TLR4,ITGAM,C5AR1,FCER1G,and FCGR2A,were finally identified,all of which are closely related to immune cell infiltration.The gene-miRNA analysis detected 13 miRNAs with at least two gene cross-links.TF-gene interaction networks showed that TLR4 was coregulated by 26 TFs,the largest number of TFs among the 5 hub genes.CONCLUSION We identified five hub genes that may have molecular connections between H.pylori infection and T2DM.This study provides new insights into the pathogenesis of H.pylori-induced onset of T2DM.
基金the National Key Research and Development Program of China(2017YFD0800102)the Hubei Provincial Key Research and Development Program,China(2021BCA156)。
文摘Dynamic nitrification and denitrification processes are affected by changes in soil redox conditions,and they play a vital role in regulating soil N_(2)O emissions in rice-based cultivation.It is imperative to understand the influences of different upland crop planting systems on soil N_(2)O emissions.In this study,we focused on two representative rotation systems in Central China:rapeseed–rice(RR)and wheat–rice(WR).We examined the biotic and abiotic processes underlying the impacts of these upland plantings on soil N_(2)O emissions.The results revealed that during the rapeseed-cultivated seasons in the RR rotation system,the average N_(2)O emissions were 1.24±0.20 and 0.81±0.11 kg N ha^(–1)for the first and second seasons,respectively.These values were comparable to the N_(2)O emissions observed during the first and second wheat-cultivated seasons in the WR rotation system(0.98±0.25 and 0.70±0.04 kg N ha^(–1),respectively).This suggests that upland cultivation has minimal impacts on soil N_(2)O emissions in the two rotation systems.Strong positive correlations were found between N_(2)O fluxes and soil ammonium(NH_(4)^(+)),nitrate(NO_(3)^(–)),microbial biomass nitrogen(MBN),and the ratio of soil dissolved organic carbon(DOC)to NO_(3)^(–)in both RR and WR rotation systems.Moreover,the presence of the AOA-amoA and nirK genes were positively associated with soil N_(2)O fluxes in the RR and WR systems,respectively.This implies that these genes may have different potential roles in facilitating microbial N_(2)O production in various upland plantation models.By using a structural equation model,we found that soil moisture,mineral N,MBN,and the AOA-amoA gene accounted for over 50%of the effects on N_(2)O emissions in the RR rotation system.In the WR rotation system,soil moisture,mineral N,MBN,and the AOA-amoA and nirK genes had a combined impact of over 70%on N_(2)O emissions.These findings demonstrate the interactive effects of functional genes and soil factors,including soil physical characteristics,available carbon and nitrogen,and their ratio,on soil N_(2)O emissions during upland cultivation seasons under rice-upland rotations.
基金funded by the Research Deanship of King Khalid University,No.GRP-215-43 (to FHA)Princess Nourah bint Abdulrohman University Researchers Supporting Project,No.PNURSP2023R110 (to AFD)。
文摘Memory loss and dementia are major public health concerns with a substantial economic burden.Oxidative stress has been shown to play a crucial role in the pathophysiology of hippocampal damage-induced memory impairment.To investigate whether the antioxidant and anti-inflammatory compound vanillyla cetone(zingerone) can protect against hippocampal damage and memory loss induced by cadmium chloride(CdCl_(2)) administration in rats,we explo red the potential involvement of the nuclear factor erythroid 2-related factor 2(Nrf2) signaling pathway,which is known to modulate oxidative stress and inflammation.Sixty healt hy male Wistar rats were divided into five groups:vehicle-treated(control),vanillylacetone,CdCl_(2),vanillylacetone+ CdCl_(2),vanillylacetone+ CdCl_(2)+ brusatol(a selective pharmacological N rf2inhibitor) groups.Vanillylacetone effectively attenuated CdCl_(2)-induced damage in the dental gyrus of the hippocampus and improved the memory function assessed by the Morris Water Maze test.Additionally,vanillylacetone markedly decreased the hippocampal tissue levels of inflammatory biomarkers(interleukin-6,tumor necrosis factor-α,intracellular cell adhesive molecules) and apoptosis biomarkers(Bax and cleaved caspase-3).The control and CdCl_(2)-treated groups treated with va nillylacetone showed reduced generation of reactive oxygen species,decreased malondialdehyde levels,and increased superoxide dismutase and glutathione activities,along with significant elevation of nuclear Nrf2 mRNA and protein expression in hippocampal tissue.All the protective effects of vanillylacetone we re substantially blocked by the co-administration of brusatol(a selective N rf2 inhibitor).Va nillylacetone mitigated hippocampal damage and memory loss induced by CdCl_(2),at least in part, by activating the nuclear transcription factor Nrf2.Additionally,vanillylacetone exerted its potent antioxidant and antiinflammatory actions.
文摘Introduction: Omicron is a highly divergent variant of concern (VOCs) of a severe acute respiratory syndrome SARS-CoV-2. It carries a high number of mutations in its spike protein hence;it is more transmissible in the community by immune evasion mechanisms. Due to mutation within S gene, most Omicron variants have reported S gene target failure (SGTF) with some commercially available PCR kits. Such diagnostic features can be used as markers to screen Omicron. However, Whole Genome Sequencing (WGS) is the only gold standard approach to confirm novel microorganisms at genetically level as similar mutations can also be found in other variants that are circulating at low frequencies worldwide. This Retrospective study is aimed to assess RT-PCR sensitivity in the detection of S gene target failure in comparison with whole genome sequencing to detect variants of Omicron. Methods: We have analysed retrospective data of SARS-CoV-2 positive RT-PCR samples for S gene target failure (SGTF) with TaqPath COVID-19 RT-PCR Combo Kit (ThermoFisher) and combined with sequencing technologies to study the emerged pattern of SARS-CoV-2 variants during third wave at the tertiary care centre, Surat. Results: From the first day of December 2021 till the end of February 2022, a total of 321,803 diagnostic RT-PCR tests for SARS-CoV-2 were performed, of which 20,566 positive cases were reported at our tertiary care centre with an average cumulative positivity of 6.39% over a period of three months. In the month of December 21 samples characterized by the SGTF (70/129) were suggestive of being infected by the Omicron variant and identified as Omicron (B.1.1.529 lineage) when sequence. In the month of January, we analysed a subset of samples (n = 618) with SGTF (24%) and without SGTF (76%) with Ct values Conclusions: During the COVID-19 pandemic, it took almost more than 15 days to diagnose infection and identify pathogen by sequencing technology. In contrast to that molecular assay provided quick identification with the help of SGTF phenomenon within 5 hours of duration. This strategy helps scientists and health policymakers for the quick isolation and identification of clusters. That ultimately results in a decreased transmission of pathogen among the community.
基金Supported by Higher Education Commission of Pakistan(NRPU#2835)Pakistan Science Foundation Project No.Biotech 101,funded to Professor Dr.Ali Muhammad Waryah.
文摘AIM:To find out the association of secreted protein acidic and rich in cysteine(SPARC)-related modular calcium binding 2(SMOC2)gene variants rs2255680 and rs13208776 with genotypic and phenotypic characteristics in both familial and non-familial primary open angle glaucoma(POAG)patients.METHODS:A total of 212 POAG patients,comprising 124 familial and 88 non-familial,were enrolled.For genotyping the SMOC2 variant rs2255680,amplification refractory mutation system(ARMS)-polymerase chain reaction(PCR)method and PCR-restriction fragment length polymorphism(PCR-RFLP)were utilized for analyzing rs13208776 variant.RESULTS:The mean age of familial POAG patients was 50.92±9.12y,with 78 males and 46 females.The mean age of non-familial POAG patients was 53.14±13.44y,with 52 males and 36 females.The SMOC2 gene variant rs13208776 showed the significant association with POAG between familial and non-familial groups.The homozygous G/G variant was frequent among non-familial(60.2%)whereas the heterozygous G/A variant was more frequent in familial POAG patients(46%).There were significant differences in G/A variant between familial and non-familial glaucoma patients,and the risk was decreased to 0.53-fold in non-familial glaucoma patients[odds ratio(OR):0.53;95%confidence interval(CI):0.29-0.94;P=0.033]in codominant model.The risk was further reduced to 0.49-fold(95%CI:0.28-0.86;P=0.012)in dominant model for non-familial patients.No significant association of SMOC2 gene variant rs2255680 between familial and non-familial glaucoma patients was found in our population.The haplotype analysis showed the decreased risk for TA[OR:0.48(95%CI:0.29-0.79);P=0.004]and an increased risk for TG[OR=2.28(95%CI:1.22-4.25);P=0.01]haplotypes.CONCLUSION:Current findings show significant association of SMOC2 gene variant rs13208776 with POAG between familial and non-familial Pakistani patients.
基金Supported by the National High-Level Hospital Clinical Research Fund,No.2022-PUMCH-A-020the Undergraduate Teaching Reform and Innovation Project,No.2022zlgc0108.
文摘Chronic enteropathy associated with the SLCO2A1 gene(CEAS)is a complex gastroenterological condition characterized by multiple ulcers in the small intestine with chronic bleeding and protein loss.This review explores the potential mechanisms underlying the pathogenesis of CEAS,focusing on the role of SLCO2A1-encoded prostaglandin transporter OATP2A1 and its impact on prostaglandin E2(PGE2)levels.Studies have suggested that elevated PGE2 levels contribute to mucosal damage,inflammation,and disruption of the intestinal barrier.The effects of PGE2 on macrophage activation and Maxi-Cl channel functionality,as well as its interaction with nonsteroidal anti-inflammatory drugs play crucial roles in the progression of CEAS.Understanding the balance between its protective and pro-inflammatory effects and the complex interactions within the gastrointestinal tract can shed light on potential therapeutic targets for CEAS and guide the development of novel,targeted therapies.
基金Supported by National Nature Science Foundation of China,No.82100195China Postdoctoral Science Foundation,No.2021M700777Medical Research Project of Foshan Municipal Health Bureau,No.20230349.
文摘BACKGROUND Colon cancer is acknowledged as one of the most common malignancies worldwide,ranking third in United States regarding incidence and mortality.Notably,approximately 40%of colon cancer cases harbor oncogenic KRAS mutations,resulting in the continuous activation of epidermal growth factor receptor signaling.AIM To investigate the key pathogenic genes in KRAS mutant colon cancer holds considerable importance.METHODS Weighted gene co-expression network analysis,in combination with additional bioinformatics analysis,were conducted to screen the key factors driving the progression of KRAS mutant colon cancer.Meanwhile,various in vitro experiments were also conducted to explore the biological function of transglutaminase 2(TGM2).RESULTS Integrated analysis demonstrated that TGM2 acted as an independent prognostic factor for progression-free survival.Immunohistochemical analysis on tissue microarrays revealed that TGM2 was associated with an elevated probability of perineural invasion in patients with KRAS mutant colon cancer.Additionally,biological roles of the key gene TGM2 was also assessed,suggesting that the downregulation of TGM2 attenuated the proliferation,invasion,and migration of the KRAS mutant colon cancer cell line.CONCLUSION This study underscores the potential significance of TGM2 in the progression of KRAS mutant colon cancer.This insight not only offers a theoretical foundation for therapeutic approaches but also highlights the need for additional clinical trials and fundamental research to support our preliminary findings.
文摘BACKGROUND In the medical and dental fields,there is a need for studies of new therapeutic approaches for the treatment of bone defects that cause extensive bone loss.Melatonin may be an important endogenous biological factor for bone remodeling,and growth factors may enhance the repair process.AIM To evaluate the gene expression of cytokines(IL-1β,IL-6,IL-10 and TNF-α),markers of osteoclastogenesis(RANK,RANKL and OPG)and MMPs(MMP-1,MMP-2,MMP-8 and MMP-13)from the treatment of melatonin associated with an osteogenic membrane and rhBMP-2 on the recovery of a bone injury.METHODS Sixty-four rats were used and divided into 9 experimental groups and were formed according to the treatment carried out in the region of the bone lesion,which varied between the combination of 1,10 and 100μmol/L of melatonin.Gene Expression analysis was performed using real time-PCR by reading the concentration of total RNA and reverse transcription.RESULTS There were differences between groups when compared with clot or scaffold control,and improvement with a higher concentration of melatonin or rhBMP-2.The combination melatonin(1μg)with 5μg of rhBMP-2,using the guided bone regeneration technique,demonstrated some effects,albeit mild,on bone repair of critical bone defects.CONCLUSION This indicates that the approach for administering these substances needs to be reassessed,with the goal of ensuring their direct application to the affected area.Therefore,future research must be carried out,seeking to produce materials with these ideal characteristics.
文摘Background:Pancreatic ductal adenocarcinoma(PDAC)has a rich and complex tumor immune microenvironment(TIME).M2 macrophages are among the most extensively infiltrated immune cells in the TIME and are necessary for the growth and migration of cancers.However,the mechanisms and targets mediating M2 macrophage infiltration in pancreatic cancer remain elusive.Methods:The M2 macrophage infiltration score of patients was assessed using the xCell algorithm.Using weighted gene co-expression network analysis(WGCNA),module genes associated with M2 macrophages were identified,and a predictive model was designed.The variations in immunological cell patterns,cancer mutations,and enrichment pathways between the cohorts with the high-and low-risk were examined.Additionally,the expression of FCGR3A and RNASE2,as well as their association with M2 macrophages were evaluated using the HPA,TNMplot,and GEPIA2 databases and verified by tissue immunofluorescence staining.Moreover,in vitro cell experiments were conducted,where FCGR3A was knocked down in pancreatic cancer cells using siRNA to analyze its effects on M2 macrophage infiltration,tumor proliferation,and metastasis.Results:The prognosis of patients in high-risk and low-risk groups was successfully distinguished using a prognostic risk score model of M2 macrophage-related genes(p=0.024).Between the high-and low-risk cohorts,there have been notable variations in immune cell infiltration patterns,tumor mutations,and biological functions.The risk score was linked to the manifestation of prevalent immunological checkpoints,immunological scores,and stroma values(all p<0.05).In vitro experiments and tissue immunofluorescence staining revealed that FCGR3A can promote the infiltration or polarization of M2 macrophages and enhance tumor proliferation and migration.Conclusions:In this study,an M2 macrophage-related pancreatic cancer risk score model was established,and found that FCGR3A was correlated with tumor formation,metastasis,and M2 macrophage infiltration.
基金Supported by Program for New Century Excellent Talents in University of Ministry of Education of China(NCET-04-0907)Program for Young Scholars in Breeding from Sichuan Provincial Department of Finance(2009QNJJ-D18)~~
文摘[Objective] The aim of this study was to provide metabolic evidence for the analysis of the ecological and safety assessment of Pi-d2-transgenic rice.[Method] The main agronomic characters of Pi-d2-transgenic rice were observed in field experiment and the grain chemical characters and amino acid content were measured.[Results] Introduction of foreign gene Pi-d2 resulted in stably hereditable variation in agronomic characteristics in the descents.Most of the transgenic lines grew normally and orderly.Compared with the control(wild type plants),about half of transgenic plants showed an increased or reduced plant height.There was no observable difference between transgenic plants and controls in tiller number,length of panicle,panicles per plant,seed-setting rate and 1 000-grain weight.Total amino acid content in transgenic rice was reduced,while the starch content,GC and GT were not altered in comparison with the control.[Conclusion] Introduction of foreign gene Pi-d2 has remarkable influence on plant height,while little on grain chemical characters.
文摘An approximately 800 bp cDNA ( Lhcb 2) encoding light_harvesting chlorophyll a/b_binding protein complex (type Ⅱ) was cloned from the seedling of pea ( Pisum sativum L.) with RT_PCR method. Southern blotting using special probe demonstrated that there existed one copy of Lhcb 2 in pea genome. RT_PCR and Northern blotting revealed the expression of Lhcb 2 which was regulated by light in a time_dependent expression manner. The Lhcb 2 gene didn't express untill 2 h after irradiated with white light. Low temperature (4 ℃) also affected the Lhcb 2 gene by decreasing half of its expression under 25 ℃.