为在月球建立长期驻留的月面科研基地,实现局部网络的通信覆盖,提出了月球通信塔(lunar communication tower,LCT)的模型设计方法和多基站的部署方案。通过对月面探测任务与月表多设施通信网络的需求分析,设计了LCT的功能模块和模型结...为在月球建立长期驻留的月面科研基地,实现局部网络的通信覆盖,提出了月球通信塔(lunar communication tower,LCT)的模型设计方法和多基站的部署方案。通过对月面探测任务与月表多设施通信网络的需求分析,设计了LCT的功能模块和模型结构。引入基于地理信息的覆盖场强预测模型,结合月表地形对通信链路的损耗影响,评估了多基站通信塔的有效覆盖与传输速率指标。在部署方案上,首先,在月球南极光照区范围内采用遍历法得到覆盖平均场强最大的主基站部署位置;随后,采用遗传算法最大化主基站半径10 km范围内的覆盖场强,对月球表面特定区域进行搜索,获取多个副基站的最佳部署位置;最后,针对集中式和分布式通信塔主、副基站的部署方案,进行了对应于CCSDS Proximity-1协议、长期演进(long term evolution,LTE)、Wi-Fi制式下覆盖性和传输速率的仿真分析,充分验证了月表多设施通信网络建设的可行性。展开更多
文摘为在月球建立长期驻留的月面科研基地,实现局部网络的通信覆盖,提出了月球通信塔(lunar communication tower,LCT)的模型设计方法和多基站的部署方案。通过对月面探测任务与月表多设施通信网络的需求分析,设计了LCT的功能模块和模型结构。引入基于地理信息的覆盖场强预测模型,结合月表地形对通信链路的损耗影响,评估了多基站通信塔的有效覆盖与传输速率指标。在部署方案上,首先,在月球南极光照区范围内采用遍历法得到覆盖平均场强最大的主基站部署位置;随后,采用遗传算法最大化主基站半径10 km范围内的覆盖场强,对月球表面特定区域进行搜索,获取多个副基站的最佳部署位置;最后,针对集中式和分布式通信塔主、副基站的部署方案,进行了对应于CCSDS Proximity-1协议、长期演进(long term evolution,LTE)、Wi-Fi制式下覆盖性和传输速率的仿真分析,充分验证了月表多设施通信网络建设的可行性。