Starting from the optical fractional Fourier transform (FFT) and using the technique of integration withinan ordered product of operators we establish a formalism of FFT for quantum mechanical wave functions. In doing...Starting from the optical fractional Fourier transform (FFT) and using the technique of integration withinan ordered product of operators we establish a formalism of FFT for quantum mechanical wave functions. In doing so, theessence of FFT can be seen more clearly, and the FFT of some wave functions can be derived more directly and concisely.We also point out that different FFT integral kernels correspond to different quantum mechanical representations. Theyare generalized FFT. The relationship between the FFT and the rotated Wigner operator is studied by virtue of theWeyl ordered form of the Wigner operator.展开更多
Using the technique of integral within an ordered product (IWOP) of operators we show that the wavelet transform can be recasted to a matrix element of squeezing-displacing operator between the mother wavelet state ve...Using the technique of integral within an ordered product (IWOP) of operators we show that the wavelet transform can be recasted to a matrix element of squeezing-displacing operator between the mother wavelet state vector and the state vector to be transformed in the context of quantum mechanics. In this way many quantum optical states'wavelet transform can be easily derived.展开更多
Based on the Radon transform and fractional Fourier transform we introduce the fractional Radon trans-formation (FRT). We identify the transform kernel for FRT. The FRT of Wigner operator is derived, which naturallyre...Based on the Radon transform and fractional Fourier transform we introduce the fractional Radon trans-formation (FRT). We identify the transform kernel for FRT. The FRT of Wigner operator is derived, which naturallyreduces to the projector of eigenvector of the rotated quadrature in the usual Radon transform case.展开更多
The generalization of tomographic maps to byperplanes is considered. We find that the Radon transform of the Wigner operator in multi-dimensional phase space leads to a normally ordered operator in binomial distributi...The generalization of tomographic maps to byperplanes is considered. We find that the Radon transform of the Wigner operator in multi-dimensional phase space leads to a normally ordered operator in binomial distribution-a mixed-state density operator. Reconstruction of the Wigner operator is also feasible. The normally ordered form and the Weyl ordered form of the Wigner operator are used in our derivation. The operator quantum tomography theory is expressed in terms of some operator identities, with the merit of revealing the essence of the theory in a simple and concise way.展开更多
By virtue of the method of integration within ordered product(IWOP)of operators we find the normally ordered form of the optical wavelet-fractional squeezing combinatorial transform(WFrST)operator.The way we successfu...By virtue of the method of integration within ordered product(IWOP)of operators we find the normally ordered form of the optical wavelet-fractional squeezing combinatorial transform(WFrST)operator.The way we successfully combine them to realize the integration transform kernel of WFr ST is making full use of the completeness relation of Dirac’s ket–bra representation.The WFr ST can play role in analyzing and recognizing quantum states,for instance,we apply this new transform to identify the vacuum state,the single-particle state,and their superposition state.展开更多
We introduce the quantum Hadamard operator in continuum state vector space and find that it can be decomposed into a single-mode squeezing operator and a position-momentum mutual transform operator. The two-mode Hadam...We introduce the quantum Hadamard operator in continuum state vector space and find that it can be decomposed into a single-mode squeezing operator and a position-momentum mutual transform operator. The two-mode Hadamard operator in bipartite entangled state representation is also introduced, which involves the two-mode squeezing operator and [η〉 ←→|ξ〉 mutual transformation operator, where [η〉 and |ξ〉 are mutual conjugate entangled states. All the discussions are proceeded by virtue of the IWOP technique.展开更多
文摘Starting from the optical fractional Fourier transform (FFT) and using the technique of integration withinan ordered product of operators we establish a formalism of FFT for quantum mechanical wave functions. In doing so, theessence of FFT can be seen more clearly, and the FFT of some wave functions can be derived more directly and concisely.We also point out that different FFT integral kernels correspond to different quantum mechanical representations. Theyare generalized FFT. The relationship between the FFT and the rotated Wigner operator is studied by virtue of theWeyl ordered form of the Wigner operator.
文摘Using the technique of integral within an ordered product (IWOP) of operators we show that the wavelet transform can be recasted to a matrix element of squeezing-displacing operator between the mother wavelet state vector and the state vector to be transformed in the context of quantum mechanics. In this way many quantum optical states'wavelet transform can be easily derived.
文摘Based on the Radon transform and fractional Fourier transform we introduce the fractional Radon trans-formation (FRT). We identify the transform kernel for FRT. The FRT of Wigner operator is derived, which naturallyreduces to the projector of eigenvector of the rotated quadrature in the usual Radon transform case.
基金supported by National Natural Science Foundation of China (Grant No 10874174)the President Foundation of Chinese Academy of Sciences
文摘The generalization of tomographic maps to byperplanes is considered. We find that the Radon transform of the Wigner operator in multi-dimensional phase space leads to a normally ordered operator in binomial distribution-a mixed-state density operator. Reconstruction of the Wigner operator is also feasible. The normally ordered form and the Weyl ordered form of the Wigner operator are used in our derivation. The operator quantum tomography theory is expressed in terms of some operator identities, with the merit of revealing the essence of the theory in a simple and concise way.
基金supported by the National Natural Science Foundation of China(Grant No.11304126)the College Students’Innovation Training Program(Grant No.202110299696X)。
文摘By virtue of the method of integration within ordered product(IWOP)of operators we find the normally ordered form of the optical wavelet-fractional squeezing combinatorial transform(WFrST)operator.The way we successfully combine them to realize the integration transform kernel of WFr ST is making full use of the completeness relation of Dirac’s ket–bra representation.The WFr ST can play role in analyzing and recognizing quantum states,for instance,we apply this new transform to identify the vacuum state,the single-particle state,and their superposition state.
基金The project supported by National Natural Science Foundation of China under Grant No.10475056
文摘We introduce the quantum Hadamard operator in continuum state vector space and find that it can be decomposed into a single-mode squeezing operator and a position-momentum mutual transform operator. The two-mode Hadamard operator in bipartite entangled state representation is also introduced, which involves the two-mode squeezing operator and [η〉 ←→|ξ〉 mutual transformation operator, where [η〉 and |ξ〉 are mutual conjugate entangled states. All the discussions are proceeded by virtue of the IWOP technique.
基金国家自然科学基金(the National Natural Science Foundation of China under Grant No.60375021)教育部留学回国人员科研启动基金(The Project-Sponsored by SRF for ROCS+5 种基金SEM)湖南省杰出青年基金(the Fund of Hunan Province for Distinguished Young Scholarunder Grant No.05JJ10011)湖南省自然基金重点基金(No.04JJ20010)湖南省教育厅重点项目(the Research Project of Department ofEducation of Hunan ProvinceChina under Grant No.04A056No.05C092)。