Theδ18O of ice core enclosed gaseous oxygen(δ18Obub)has been widely used for climate reconstruction in polar regions.Yet,less is known about its climatic implication in the mountainous glaciers as the lack of contin...Theδ18O of ice core enclosed gaseous oxygen(δ18Obub)has been widely used for climate reconstruction in polar regions.Yet,less is known about its climatic implication in the mountainous glaciers as the lack of continuous record.Here,we present a long-term,continuousδ18Obub record from the Tanggula glacier in the central Tibetan Plateau(TP).Based on comparisons of its variation with regional climate and glacier changes,we found that there was a good correlation between the variation of theδ18Obub in this alpine ice core and the accumulation and melting of this glacier.The more developed the firn layer on glacier surface,the more positive theδ18Obub.Conversely,the more intense the glacier melting,the more negative theδ18Obub.Combined with the chronology of ice core enclosed gases,the glacier variations since the late Holocene in the central TP were reconstructed.The result showed that there were four accumulation and three deficit periods of glaciers in this region.The strongest glacier accumulation period was 1610-300 B.C.,which corresponds to the Neoglaciation.The most significant melting period was the last 100 years,which corresponds to the recent global warming.The Medieval Warm Period was relatively significant in the central TP.However,during the Little Ice Age,there was no significant glacier accumulation in the central TP,and even short deficit events occurred.Comparisons of the late Holocene glacier variation in the central TP with glacier and climate variations in the TP and the Northern Hemisphere showed that it was closely related to the North Atlantic Oscillation.展开更多
Ice melt water from a 22.27 m ice core which was drilled from the East Rongbuk Glacier, Mt. Everest was incubation in two incubation ways: plate melt water directly and enrichment melt water prior plate, respectively...Ice melt water from a 22.27 m ice core which was drilled from the East Rongbuk Glacier, Mt. Everest was incubation in two incubation ways: plate melt water directly and enrichment melt water prior plate, respectively. The abundance of cultivable bacteria ranged from 0-295 CFU mL-I to 0--1720 CFU mL-1 in two incubations with a total of 1385 isolates obtained. Comparing to direct cultivation, enrichment cultivation recovered more bacteria. Pigment-producing bacteria accounted for an average of 84.9% of total isolates. Such high percentage suggested that pigment production may be an adaptive physiological feature for the bacteria in ice core to cope with strong ultraviolet radiation on the glacier. The abundances of cultivable bacteria and pigment-producing isolates varied synchronously along depth: higher abundance in the middle and lower at the top and bottom. It indicated that the middle part of the ice core was hospitable for the microbial survival. Based on the physiological properties of the colonies, eighty-nine isolates were selected for phylogenetic analysis. Obtained 16S rRNA gene sequences fell into four groups: Firmicutes, Alpha-Proteobacteria, Gamma-Proteobacteria, and Actinobacteria, with the Firmicutes being dominant. Microbial compositions derived from direct and enrichment cultivations were not overlapped. We suggest that it is a better way to explorethe culturable microbial diversity in ice core by combining the approaches of both direct and enrichment cultivation.展开更多
A 6-m ice core was recovered in 2004 from the Naimona'Nyi Glacier, the middle Himalayas. Empirical orthogonal function (EOF) analysis on the major ion reveals that EOF1 represents the variations of majority of ions...A 6-m ice core was recovered in 2004 from the Naimona'Nyi Glacier, the middle Himalayas. Empirical orthogonal function (EOF) analysis on the major ion reveals that EOF1 represents the variations of majority of ions which may be originated from crustal aerosols. Comparing the calcium concentrations from the Naimona'Nyi with these from Dasuopu, East Rongbuk and Guliya ice cores, it is observed that calcium, a good indicator of the input of crustal aerosol in snow, concentrates mostly in the Guliya ice core located on the northern Tibetan Plateau, and gradually decreases from west to east in the Himalayas.展开更多
Black Carbon(BC),as a driver of environmental change,could significantly impact the snow by accelerating melting and decreasing albedo.Systematic documentation of BC studies is crucial for a better understanding of it...Black Carbon(BC),as a driver of environmental change,could significantly impact the snow by accelerating melting and decreasing albedo.Systematic documentation of BC studies is crucial for a better understanding of its spatial and temporal trends.This study reviewed the BC studies in the ice core and remote lake sediments and their sources in the northern hemisphere.The literature surveyed points to around 2.9 to 3.7 times increase of BC in the European Alps and up to a three-fold increase of BC in the Himalayan-Tibetan Plateau(HTP)after the onset of industrialization in Europe and Asia,respectively.BC concentration from Greenland ice core showed seven times increase with an interrupted trend after 1950's.South Asian emissions were dominant in the HTP along with a contribution from the Middle East,whereas Western European and local emissions were responsible for the change in BC concentration in the European Alps.In the Arctic,contributions from North America,Europe and Asia persisted.Similarly,a historical reconstruction of lake sediments records demonstrates the effects of emissions from long-range transport,sediment focusing,local anthropogenic activities,precipitation and total input of flux on the BC concentration.展开更多
In June 2006,a 20.12 m shallow ice core was recovered from an elevation of 5,040 m in the northern branch firn basin of No.12 Glacier,Great Snow Mountain,in the western part of Qilian Mountain,China.Isotopes(δ 18 O),...In June 2006,a 20.12 m shallow ice core was recovered from an elevation of 5,040 m in the northern branch firn basin of No.12 Glacier,Great Snow Mountain,in the western part of Qilian Mountain,China.Isotopes(δ 18 O),major soluble ions,and radionuclide(β-activity) measurements from the ice core revealed a 46-year record(1960-2006).In this paper,the method of sea-salt ion tracer,correlation analysis and trend analysis were used in this research to confirm the source of the chemical composition.The correlation analysis and HYSPLIT backward trajectory analysis suggests that atmospheric soluble dust species dominate the chemical signature.展开更多
A 211 m depth ice core observation was carried out at the top of the Vestfonna Ice Cap in Nordaustlandet, Svalbard, Norway in 1995. Chronology of the ice core was determined by tritium analysis and comparison to the v...A 211 m depth ice core observation was carried out at the top of the Vestfonna Ice Cap in Nordaustlandet, Svalbard, Norway in 1995. Chronology of the ice core was determined by tritium analysis and comparison to the volcanic eruption of Laki; the resulting accumulation rate is 0.34 0.35 m water eq.·yr -1 for the last 400 year. Concentrations of Al, V, Cr, Fe, Cu, Zn, As, Ag, Cd, Pb and U in an ice core have been determined by an inductively coupled plasma mass spectrometry (ICP MS) with a desolvated micro concentric nebulizer, which is a recent development and can achieve high sensitivity with low uptake rate of 60 mL/min. The concentrations of Pb, Cu, and Zn had increased from 1940s declined from 1970s to present. However, the profiles of Pb, Cu, and Zn were different and they seem to be influenced by the difference of sources. Since the ratios between Cu, Pb, and Zn in Svalbard is similar to that in French Alps, the source area of these elements is estimated to be Europe.展开更多
A 70-year history of precipitation δ^18O record has been retrieved using an ice core drilled from a plat portion of the firn area in the Guoqu Glacier (33°34'37.8″ N, 91°10'35.3″ E, 5720 m a.s.l.) on ...A 70-year history of precipitation δ^18O record has been retrieved using an ice core drilled from a plat portion of the firn area in the Guoqu Glacier (33°34'37.8″ N, 91°10'35.3″ E, 5720 m a.s.l.) on Mt. Geladaindong (the source region of Yangtze River) during October and November, 2005. Based on the seasonality of δ^18O records and the significant positive relationships between monsoon/non-monsoon δ^18O values and summer/spring air temperature from the nearby meteorological stations, the history of summer and spring air temperature have been reconstructed for the last 70 years. The results show that both summer and spring air temperature variations present similar trends during the last 70 years. Regression analysis indicates that the slope of the temperature-δ^18O relationship is 1.3℃/‰ for non-monsoon δ^18O values and spring air temperature, and 0.4℃/‰ for monsoon δ^18O values and summer air temperature. Variation of air temperature recorded in the ice core is consistent with that in the Northern Hemisphere (NH), however, the warming trend in the Geladaindong region is more intense than that in the NH, reflecting a higher sensitivity to global warming in the high elevation regions. In addition, warming trend is greater in spring than in summer.展开更多
High-resolution ice core records covering long time spans enable reconstruction of the past climatic and environmental conditions allowing the investigation of the earth system's evolution. Preprocessing of ice co...High-resolution ice core records covering long time spans enable reconstruction of the past climatic and environmental conditions allowing the investigation of the earth system's evolution. Preprocessing of ice cores has direct impacts on the data quality control for further analysis since the conventional ice core processing is time-consuming, produces qualitative data, leads to ice mass loss, and leads to risks of potential secondary pollution. However, over the past several decades, preprocessing of ice cores has received less attention than the improvement of ice drilling, the analytical methodology of various indices, and the researches on the climatic and environmental significance of ice core records. Therefore, this papers reviews the development of the processing for ice cores including framework, design as well as materials, analyzes the technical advantages and disadvantages of the different systems. In the past, continuous flowanalysis(CFA) has been successfully applied to process the polar ice cores. However, it is not suitable for ice cores outside polar region because of high level of particles, the memory effect between samples, and the filtration before injection. Ice core processing is a subtle and professional operation due to the fragility of the nonmetallic materials and the random distribution of particles and air bubbles in ice cores, which aggravates uncertainty in the measurements. The future developments of CFA are discussed in preprocessing, memory effect, challenge for brittle ice, coupling with real-time analysis and optimization of CFA in the field. Furthermore, non-polluting cutters with many different configurations could be designed to cut and scrape in multiple directions and to separate inner and outer portions of the core. This system also needs to be coupled with streamlined operation of packaging, coding, and stacking that can be implemented at high resolution and rate, avoiding manual intervention. At the same time, information of the longitudinal sections could be scanned andidentified, and then classified to obtain quantitative data. In addition, irregular ice volume and weight can also be obtained accurately. These improvements are recorded automatically via user-friendly interfaces. These innovations may be applied to other paleomedias with similar features and needs.展开更多
A high-resolution 2ooo-year methane record has been constructed from an ice core recovered at 7200 m a.s.1, on the Dasuopu Glacier in the central Himalayas. This sub-tropical methane record reveals an increasing trend...A high-resolution 2ooo-year methane record has been constructed from an ice core recovered at 7200 m a.s.1, on the Dasuopu Glacier in the central Himalayas. This sub-tropical methane record reveals an increasing trend in the concentration of methane during the industrial era that is similar to observations from polar regions. However, we also observed the differences in the atmospheric methane mixing ratio between this monsoon record and those from polar regions during pre-industrial times. In the time interval o N 1850 A.D., the average methane concentration in the Dasuopu ice core was 782±40 ppbv and the maximum temporal variation exceeded 200 ppbv. The difference gradient of methane concentration in Dasuopu ice core with Greenland and Antarctica cores are 66±40 ppbv and 107±40 ppbv, respectively. This suggests that the tropical latitudes might have acted as a major global methane source in preindustrial times. In addition, the temporal fluctuation of the pre-industrial methane records suggests that monsoon evolution incorporated with high methane emission from south Asia might be responsible for the relatively high methane concentration observed in the Dasuopu ice core around A.D. 800 and A.D. 1600. These results provide a rough understanding of the contribution of tropical methane source to the global methane budget and also the relationship betweenatmospheric methane and climate change.展开更多
The correlations of the d18Omax in the shallow ice core from the Guliya ice cap on the Tibetan Plateau with the global sea surface temperatures (SST) and height at the 500 hPa over the Northern Hemisphere were analyze...The correlations of the d18Omax in the shallow ice core from the Guliya ice cap on the Tibetan Plateau with the global sea surface temperatures (SST) and height at the 500 hPa over the Northern Hemisphere were analyzed. The correlated regions on oceans that have a significant influence on the d18Omax in the Guliya ice core are all located in ocean currents, or convergent regions of currents. They are the eastern Equatorial Pacific, the Northern Pacific Current, the Hot Pool in the eastern Indian Ocean, the Mozambique Current, the Northern Atlantic Current, the Canary Current and the Atlantic Equatorial Current. The d18Omax in the Guliya ice core has negative correlations with the SST located in the lower latitudes, and positive correlations with the SST in the middle latitudes. The correlated areas at the 500 hPa that have a great impact on the d18Omax are located in the subtropical highs over the mid-low-latitude oceans and the long-wave trough area over Balkhash Lake, where there are marked negative correlations between the heights in those areas and the d18Omax. The influencing mechanism is displayed by the diversity of the vapor origins transported to the Guliya region. The strengths of the European ridge and the ridge over Baikal Lake have notable positive correlations with the d18Omax. The two systems indirectly influence the vapor transportation towards the Guliya region by the adjustment of long-wave trough and ridge.展开更多
Electrical Conductivity Measurement (ECM) from ice core is a representative index for atmospheric environmental change. The pH value and ECM from three shallow ice cores (each 3.85 m, 231 ice samples total) on Gla...Electrical Conductivity Measurement (ECM) from ice core is a representative index for atmospheric environmental change. The pH value and ECM from three shallow ice cores (each 3.85 m, 231 ice samples total) on Glacier No.1 at the headwater of Urumqi River, Glacier No.48 in Kuitun area, and Miaoergou Glacier in Hami area in the eastern Tianshan Mountains, western China, were measured and analyzed for atmospheric environment records research. Ice core record shows that the changing trend of pH and ECM in three sites in recent years is different: ECM in Kuitun increases with the ice depth change, but ECM in Hami and Urumqi Glacier No.1 ice cores show a decreasing trend. Average ECM value in Hami is much larger than other two sites, just as the dust concentration and ions concentration are also very high in this site. ECM records in all three sites are mainly affected by aerosol mineral dust of Central Asia, and correlative coefficients of ECM and mineral ions such as Ca^2+, Mg^2+, Na^2+ are all significantly high. The pH value and ECM are also significantly high correlative coefficients in the eastern Tianshan Mountains. Comparison between the eastern Tianshan Mountains and other sites in western China, and Polar Regions, shows that the difference of ECM can very well reflect the spatial difference of worldwide atmospheric environment.展开更多
Calibrations between sodium (Na^+) concentrations from a Mt. Logan ice core and sea level pressure (SLP) series show that Na^+ concentrations are closely correlated with the autumn-time (September-October-Novem...Calibrations between sodium (Na^+) concentrations from a Mt. Logan ice core and sea level pressure (SLP) series show that Na^+ concentrations are closely correlated with the autumn-time (September-October-November) Aleutian low (AleuLow). A deepening of the AleuLow strengthens the transport of sea-salt aerosols from the North Pacific to the Mt. Logan region. The Mt. Logan Na^+ record is used to develop a 292 a (1688-1979) reconstruction of the AleuLow revealing a dramatic intensification of atmospheric circulation over the North Pacific region since the 20th century. Mean SLP of the AleuLow was about 1 hPa lower during the 20th century than during prior periods. The strongest deepening of the AleuLow appeared in the 1950s. Significant correlations are also found between the Mt. Logan AleuLow proxy series and the Pacific decadal oscillation (PDO) and Pacific circulation (PC) index during the 20th century. Evolutionary spectral analysis of the proxy record shows significant periodicities from 15 to 30 a consistent with PDO fluctuations and the bidecadal oscillation of North Pacific atmosphere-ocean circulation. A period of 11 a in the AleuLow record may be associated with the Schwabe 11-a cycle of sunspot activity. Additional longer ice core records from this region will aid in the efforts to further understand the climatic change over the North Pacific region.展开更多
A close correlation between δ 18O in the shallow ice core in Dasuopu Glacier of the Tibetan Plateau and large scale SST is found. The marked correlated regions are mainly distributed in the ocean currents of the Ocea...A close correlation between δ 18O in the shallow ice core in Dasuopu Glacier of the Tibetan Plateau and large scale SST is found. The marked correlated regions are mainly distributed in the ocean currents of the Oceans. The SST in different sea regions influences the precipitation and vapor origin of Dasuopu Glacier by way of its actions on atmospheric circulation. When the circulation situation favoring the transportation of oceanic vapor towards the glaciers of the southern Plateau appears, the δ18O in precipitation decreases, when that infavoring the transportation of oceanic vapor but favoring the transportation of the inland vapor towards the glaciers appears. the δ 18O in precipitation increases. Among various SST and circulation factors influencing δi8O in the ice core, the mean SST anomalies in the region A5 of the Northern Pacific Current and the position of the north boundary of Subtropical high over the South China Ocean have the important impact on the δ 18O in Dasuopu Glacier during midwinter,the mean SST anomalies in the region B of the Northern Pacific Current, the center position of the arctic vortex over the Northern Hemisphere and the strength of the arctic vortex over the Pacific have the important impact on the δ 18O in the Dasuopu Glacier during midsummer. The variations of these factors restrict the magnitude of δ 18O in the ice core, and their influence all have the omen.展开更多
Ice documentation and response to prominent warming, especially after the 1990s, is further investigated because it is concerned whether ice records have absence. A δ^18O series of a Laohugou (LHG) shallow ice core...Ice documentation and response to prominent warming, especially after the 1990s, is further investigated because it is concerned whether ice records have absence. A δ^18O series of a Laohugou (LHG) shallow ice core (20.12 m) in the northeastern Tibetan Plateau was reconstructed covering the period of 1960–2006. The ice core δ^18O record had sig-nificant positive correlations with the warm season (May–September) air temperatures at adjacent meteorological stations and the 500 hPa temperatures in boreal China, indicating that the δ^18O record could be considered a credible proxy of regional temperature. A clear, cold temperature event in 1967 and rapid warming after the 1990s were captured in the LHG δ^18O series, revealing that it could record extreme air-temperature events on both regional and global scales. The LHG δ^18O variations had evident positive correlations with both the summer surface outgoing longwave radiation (OLR) in the Mongolia region and the summer meridional wind at 500 hPa in the LHG region during 1960–2006, suggesting that the increased OLR in the Mongolia region might have intensified the Mongolia Low and expanded the pressure gradient to the LHG region (the Shulehe High), which would have pushed the westerlies further north and suppressed southward incursions of cold air into the LHG region, and thus augmented the temperature rise. The regional atmospheric circulation difference (1985–2006 minus 1960–1984) suggested that the anticyclone in the Mongolia region might have developed the easterly wind, which transported warmer air from the east toward the LHG region and weakened the cold penetration of the westerlies, resulting in the temperature rise since the middle 1980s.展开更多
Cloudy bands are typical stratigraphic structure in deep ice core. Detailed recording of cloudy bands is important for dating of ice core since pair of series cloudy band and clear layer is corresponds to annual layer...Cloudy bands are typical stratigraphic structure in deep ice core. Detailed recording of cloudy bands is important for dating of ice core since pair of series cloudy band and clear layer is corresponds to annual layer and it sometimes corresponds to volcanic ash layer. We developed two type scanners, transmitted light method and laser tomograph method for the stratigraphic study. Measurements were carried out for NGRIP deep ice core, which containing many cloudy bands, using the two type scanners and digital camera. We discussed about the possibility of identification of cloudy bands by each method and about advantage and disadvantage of measurements and their results.展开更多
Studies on Chinese loess and a comparison with Antarctic ice cores provided a general pattern of global environmental change and the regional differentiation over last 150,000 years. Climatic change revealed by magnet...Studies on Chinese loess and a comparison with Antarctic ice cores provided a general pattern of global environmental change and the regional differentiation over last 150,000 years. Climatic change revealed by magnetic susceptibility of Linxia loess section in China was paralled with temperature variation revealed by δD of Vostok ice core over last 150,000 years, which indicates a pattern of climatic change tendencies on a long-scale (thousand years). However, the ranges of variation at the same phase, especially, during the last Inter-glacial age (80,000-140,000 a.B.P.) were more different between Chinese loess sections and Antarctic ice cores.展开更多
The sea ice core (1. 6m) and lake ice core (1. 5m) were taken respectively from sea sampling site and Ace Lake near Davis Station, Vestfold Hills, Antarctica in November and October, 1988. The concentrations of amino ...The sea ice core (1. 6m) and lake ice core (1. 5m) were taken respectively from sea sampling site and Ace Lake near Davis Station, Vestfold Hills, Antarctica in November and October, 1988. The concentrations of amino acids in each 10cm of ice cores were determined by High Pressure Liquid Chromatography (HPLC). The results showed that the concentrations of amino acids revealed seasonal variation during the year. The highest concentration of amino acids, which was 30. 92 /μmol/ml, were found in the bottom of sea ice core, and it was approximately 45 μmol/ml in the lake ice core. The lowest concentration was approximately 8. 0μmol/ml which is presented in surface of the sea ice core, but it was 14.0μmol/ml which was found in 60cm section of lake ice core.The seasonal variation process of concentration of amino acids were much similar to that of phytoplankton cells number in sea ice core, and the distribution and seasonal variation rate of individual amino acids were also much similar in each ice core sections. We suggest that the uniform spectrum of amino acids is probably derived from a peptide cell source and those amino acids were not utilized by organism.展开更多
The reconstruction of air trapped in ice cores provides us the most direct information about atmospheric CH4 variations in the past history. Ice core records from the "Three Poles (Antarctica, Greenland and Tibetan ...The reconstruction of air trapped in ice cores provides us the most direct information about atmospheric CH4 variations in the past history. Ice core records from the "Three Poles (Antarctica, Greenland and Tibetan Plateau)" reveal the detailed fluctuations of atmospheric CH4 concentration with time and are allowed to quantify the CH4 differences among latitudes. These data are indispensably in the farther study of the relationship between greenhouse gases and climatic change, and of the past changes in terrestrial CH4 emissions. Ice cores reconstruction indicates that atmospheric CH4 concentration has increased quickly since industrialization, and the present day's level of atmospheric CH4 (1800 ppby) is unprecedented during the past Glacial-Interglacial climate cycles.展开更多
Affiliation unit: Lanzhou Institute of Glaciology and Cold Regions Environment, CAS Brief history: The Laboratory of Ice Core and Cold Regions Environment (LICCRE) was formally approved to open domestically and intern...Affiliation unit: Lanzhou Institute of Glaciology and Cold Regions Environment, CAS Brief history: The Laboratory of Ice Core and Cold Regions Environment (LICCRE) was formally approved to open domestically and internationally by Chinese Academy of Sciences in April 1997. It is attached to the Lanzhou Institute of Glaciology and Geocryology, CAS.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.42271312,41201058)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA20070102)+1 种基金the National Key R&D Program of China(Grant No.2018YFB1307504)the Science and Technology Program of Tibet Autonomous Region of China(Grant No.XZ202101ZD0014G).
文摘Theδ18O of ice core enclosed gaseous oxygen(δ18Obub)has been widely used for climate reconstruction in polar regions.Yet,less is known about its climatic implication in the mountainous glaciers as the lack of continuous record.Here,we present a long-term,continuousδ18Obub record from the Tanggula glacier in the central Tibetan Plateau(TP).Based on comparisons of its variation with regional climate and glacier changes,we found that there was a good correlation between the variation of theδ18Obub in this alpine ice core and the accumulation and melting of this glacier.The more developed the firn layer on glacier surface,the more positive theδ18Obub.Conversely,the more intense the glacier melting,the more negative theδ18Obub.Combined with the chronology of ice core enclosed gases,the glacier variations since the late Holocene in the central TP were reconstructed.The result showed that there were four accumulation and three deficit periods of glaciers in this region.The strongest glacier accumulation period was 1610-300 B.C.,which corresponds to the Neoglaciation.The most significant melting period was the last 100 years,which corresponds to the recent global warming.The Medieval Warm Period was relatively significant in the central TP.However,during the Little Ice Age,there was no significant glacier accumulation in the central TP,and even short deficit events occurred.Comparisons of the late Holocene glacier variation in the central TP with glacier and climate variations in the TP and the Northern Hemisphere showed that it was closely related to the North Atlantic Oscillation.
基金supported by National Natural Science Foundation of China(Grant Nos.40871045 and 40810019001)MEL Young Scientist Visiting Fellowship(MELRS1022)
文摘Ice melt water from a 22.27 m ice core which was drilled from the East Rongbuk Glacier, Mt. Everest was incubation in two incubation ways: plate melt water directly and enrichment melt water prior plate, respectively. The abundance of cultivable bacteria ranged from 0-295 CFU mL-I to 0--1720 CFU mL-1 in two incubations with a total of 1385 isolates obtained. Comparing to direct cultivation, enrichment cultivation recovered more bacteria. Pigment-producing bacteria accounted for an average of 84.9% of total isolates. Such high percentage suggested that pigment production may be an adaptive physiological feature for the bacteria in ice core to cope with strong ultraviolet radiation on the glacier. The abundances of cultivable bacteria and pigment-producing isolates varied synchronously along depth: higher abundance in the middle and lower at the top and bottom. It indicated that the middle part of the ice core was hospitable for the microbial survival. Based on the physiological properties of the colonies, eighty-nine isolates were selected for phylogenetic analysis. Obtained 16S rRNA gene sequences fell into four groups: Firmicutes, Alpha-Proteobacteria, Gamma-Proteobacteria, and Actinobacteria, with the Firmicutes being dominant. Microbial compositions derived from direct and enrichment cultivations were not overlapped. We suggest that it is a better way to explorethe culturable microbial diversity in ice core by combining the approaches of both direct and enrichment cultivation.
基金National Natural Science Foundation of China, No.40121101 Knowledge Innovation Project of Chinese Academy of Sciences, No.KZCX3-SW-339
文摘A 6-m ice core was recovered in 2004 from the Naimona'Nyi Glacier, the middle Himalayas. Empirical orthogonal function (EOF) analysis on the major ion reveals that EOF1 represents the variations of majority of ions which may be originated from crustal aerosols. Comparing the calcium concentrations from the Naimona'Nyi with these from Dasuopu, East Rongbuk and Guliya ice cores, it is observed that calcium, a good indicator of the input of crustal aerosol in snow, concentrates mostly in the Guliya ice core located on the northern Tibetan Plateau, and gradually decreases from west to east in the Himalayas.
基金the National Natural Science Foundation of China(41771079,41805106)the Strategic Priority Research Program of the Chinese Academy of Sciences-The Pan-Third Pole Environment Study for a Green Silk Road(Pan-TPE)(XDA20040501)the Key Laboratory of Cryospheric Sciences Scientific Research Foundation(SKLCS-ZZ-2019)。
文摘Black Carbon(BC),as a driver of environmental change,could significantly impact the snow by accelerating melting and decreasing albedo.Systematic documentation of BC studies is crucial for a better understanding of its spatial and temporal trends.This study reviewed the BC studies in the ice core and remote lake sediments and their sources in the northern hemisphere.The literature surveyed points to around 2.9 to 3.7 times increase of BC in the European Alps and up to a three-fold increase of BC in the Himalayan-Tibetan Plateau(HTP)after the onset of industrialization in Europe and Asia,respectively.BC concentration from Greenland ice core showed seven times increase with an interrupted trend after 1950's.South Asian emissions were dominant in the HTP along with a contribution from the Middle East,whereas Western European and local emissions were responsible for the change in BC concentration in the European Alps.In the Arctic,contributions from North America,Europe and Asia persisted.Similarly,a historical reconstruction of lake sediments records demonstrates the effects of emissions from long-range transport,sediment focusing,local anthropogenic activities,precipitation and total input of flux on the BC concentration.
基金supported by the National Basic Research Program of China (2007CB411501)the National Essential Scientific Program of the Ministry of Scienceand Technology of the People’s Republic of China(2006FY110200)
文摘In June 2006,a 20.12 m shallow ice core was recovered from an elevation of 5,040 m in the northern branch firn basin of No.12 Glacier,Great Snow Mountain,in the western part of Qilian Mountain,China.Isotopes(δ 18 O),major soluble ions,and radionuclide(β-activity) measurements from the ice core revealed a 46-year record(1960-2006).In this paper,the method of sea-salt ion tracer,correlation analysis and trend analysis were used in this research to confirm the source of the chemical composition.The correlation analysis and HYSPLIT backward trajectory analysis suggests that atmospheric soluble dust species dominate the chemical signature.
文摘A 211 m depth ice core observation was carried out at the top of the Vestfonna Ice Cap in Nordaustlandet, Svalbard, Norway in 1995. Chronology of the ice core was determined by tritium analysis and comparison to the volcanic eruption of Laki; the resulting accumulation rate is 0.34 0.35 m water eq.·yr -1 for the last 400 year. Concentrations of Al, V, Cr, Fe, Cu, Zn, As, Ag, Cd, Pb and U in an ice core have been determined by an inductively coupled plasma mass spectrometry (ICP MS) with a desolvated micro concentric nebulizer, which is a recent development and can achieve high sensitivity with low uptake rate of 60 mL/min. The concentrations of Pb, Cu, and Zn had increased from 1940s declined from 1970s to present. However, the profiles of Pb, Cu, and Zn were different and they seem to be influenced by the difference of sources. Since the ratios between Cu, Pb, and Zn in Svalbard is similar to that in French Alps, the source area of these elements is estimated to be Europe.
基金National Natural Science Foundation of China, No.40401054 National 973 Program of China, No. 2005CB422004+1 种基金 CAS Hundred Talents Program Knowledge Innovation Program of CAS, No. KZCX3-SW-339/334
文摘A 70-year history of precipitation δ^18O record has been retrieved using an ice core drilled from a plat portion of the firn area in the Guoqu Glacier (33°34'37.8″ N, 91°10'35.3″ E, 5720 m a.s.l.) on Mt. Geladaindong (the source region of Yangtze River) during October and November, 2005. Based on the seasonality of δ^18O records and the significant positive relationships between monsoon/non-monsoon δ^18O values and summer/spring air temperature from the nearby meteorological stations, the history of summer and spring air temperature have been reconstructed for the last 70 years. The results show that both summer and spring air temperature variations present similar trends during the last 70 years. Regression analysis indicates that the slope of the temperature-δ^18O relationship is 1.3℃/‰ for non-monsoon δ^18O values and spring air temperature, and 0.4℃/‰ for monsoon δ^18O values and summer air temperature. Variation of air temperature recorded in the ice core is consistent with that in the Northern Hemisphere (NH), however, the warming trend in the Geladaindong region is more intense than that in the NH, reflecting a higher sensitivity to global warming in the high elevation regions. In addition, warming trend is greater in spring than in summer.
基金supported by the National Natural Science Foundation of China(Grant No.41630754)the State Key Laboratory of Cryospheric Science(SKLCS-ZZ-2017)CAS Key Technology Talent Program and Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(2017490711)
文摘High-resolution ice core records covering long time spans enable reconstruction of the past climatic and environmental conditions allowing the investigation of the earth system's evolution. Preprocessing of ice cores has direct impacts on the data quality control for further analysis since the conventional ice core processing is time-consuming, produces qualitative data, leads to ice mass loss, and leads to risks of potential secondary pollution. However, over the past several decades, preprocessing of ice cores has received less attention than the improvement of ice drilling, the analytical methodology of various indices, and the researches on the climatic and environmental significance of ice core records. Therefore, this papers reviews the development of the processing for ice cores including framework, design as well as materials, analyzes the technical advantages and disadvantages of the different systems. In the past, continuous flowanalysis(CFA) has been successfully applied to process the polar ice cores. However, it is not suitable for ice cores outside polar region because of high level of particles, the memory effect between samples, and the filtration before injection. Ice core processing is a subtle and professional operation due to the fragility of the nonmetallic materials and the random distribution of particles and air bubbles in ice cores, which aggravates uncertainty in the measurements. The future developments of CFA are discussed in preprocessing, memory effect, challenge for brittle ice, coupling with real-time analysis and optimization of CFA in the field. Furthermore, non-polluting cutters with many different configurations could be designed to cut and scrape in multiple directions and to separate inner and outer portions of the core. This system also needs to be coupled with streamlined operation of packaging, coding, and stacking that can be implemented at high resolution and rate, avoiding manual intervention. At the same time, information of the longitudinal sections could be scanned andidentified, and then classified to obtain quantitative data. In addition, irregular ice volume and weight can also be obtained accurately. These improvements are recorded automatically via user-friendly interfaces. These innovations may be applied to other paleomedias with similar features and needs.
基金supported by the National Natural Science Foundation of China (40671044)the Ministry of Science and Technology of China (2005CB422004)
文摘A high-resolution 2ooo-year methane record has been constructed from an ice core recovered at 7200 m a.s.1, on the Dasuopu Glacier in the central Himalayas. This sub-tropical methane record reveals an increasing trend in the concentration of methane during the industrial era that is similar to observations from polar regions. However, we also observed the differences in the atmospheric methane mixing ratio between this monsoon record and those from polar regions during pre-industrial times. In the time interval o N 1850 A.D., the average methane concentration in the Dasuopu ice core was 782±40 ppbv and the maximum temporal variation exceeded 200 ppbv. The difference gradient of methane concentration in Dasuopu ice core with Greenland and Antarctica cores are 66±40 ppbv and 107±40 ppbv, respectively. This suggests that the tropical latitudes might have acted as a major global methane source in preindustrial times. In addition, the temporal fluctuation of the pre-industrial methane records suggests that monsoon evolution incorporated with high methane emission from south Asia might be responsible for the relatively high methane concentration observed in the Dasuopu ice core around A.D. 800 and A.D. 1600. These results provide a rough understanding of the contribution of tropical methane source to the global methane budget and also the relationship betweenatmospheric methane and climate change.
基金Under the auspices of the G1998040802 BX2001-03 and KXCX2-301 programs
文摘The correlations of the d18Omax in the shallow ice core from the Guliya ice cap on the Tibetan Plateau with the global sea surface temperatures (SST) and height at the 500 hPa over the Northern Hemisphere were analyzed. The correlated regions on oceans that have a significant influence on the d18Omax in the Guliya ice core are all located in ocean currents, or convergent regions of currents. They are the eastern Equatorial Pacific, the Northern Pacific Current, the Hot Pool in the eastern Indian Ocean, the Mozambique Current, the Northern Atlantic Current, the Canary Current and the Atlantic Equatorial Current. The d18Omax in the Guliya ice core has negative correlations with the SST located in the lower latitudes, and positive correlations with the SST in the middle latitudes. The correlated areas at the 500 hPa that have a great impact on the d18Omax are located in the subtropical highs over the mid-low-latitude oceans and the long-wave trough area over Balkhash Lake, where there are marked negative correlations between the heights in those areas and the d18Omax. The influencing mechanism is displayed by the diversity of the vapor origins transported to the Guliya region. The strengths of the European ridge and the ridge over Baikal Lake have notable positive correlations with the d18Omax. The two systems indirectly influence the vapor transportation towards the Guliya region by the adjustment of long-wave trough and ridge.
基金National Key Project for Basic Research of China,No.2007CB411501Knowledge Innovation Project of the Chinese Academy of Sciences, No.KZCX2-YW-127+7 种基金 National Natural Science Foundation of China,No.40631001 No.40571033 No.40701034 No.40701035 No.40371028 No.J0630966 The Project for Outstanding Young Scientists of National Natural Science Foundation of China,No.40121101The Fok Ying Tung Education Foundation,No.101019
文摘Electrical Conductivity Measurement (ECM) from ice core is a representative index for atmospheric environmental change. The pH value and ECM from three shallow ice cores (each 3.85 m, 231 ice samples total) on Glacier No.1 at the headwater of Urumqi River, Glacier No.48 in Kuitun area, and Miaoergou Glacier in Hami area in the eastern Tianshan Mountains, western China, were measured and analyzed for atmospheric environment records research. Ice core record shows that the changing trend of pH and ECM in three sites in recent years is different: ECM in Kuitun increases with the ice depth change, but ECM in Hami and Urumqi Glacier No.1 ice cores show a decreasing trend. Average ECM value in Hami is much larger than other two sites, just as the dust concentration and ions concentration are also very high in this site. ECM records in all three sites are mainly affected by aerosol mineral dust of Central Asia, and correlative coefficients of ECM and mineral ions such as Ca^2+, Mg^2+, Na^2+ are all significantly high. The pH value and ECM are also significantly high correlative coefficients in the eastern Tianshan Mountains. Comparison between the eastern Tianshan Mountains and other sites in western China, and Polar Regions, shows that the difference of ECM can very well reflect the spatial difference of worldwide atmospheric environment.
基金This research was supported by the National Natural Science Foundation of China under contract No.40401054the Talent Project and Innovation Project of the Chinese Academy of Sciences under contract Nos KZCX3-SW-339 and KZCX1-10-09the US National Science Foundation under contract No.ATM0139491.
文摘Calibrations between sodium (Na^+) concentrations from a Mt. Logan ice core and sea level pressure (SLP) series show that Na^+ concentrations are closely correlated with the autumn-time (September-October-November) Aleutian low (AleuLow). A deepening of the AleuLow strengthens the transport of sea-salt aerosols from the North Pacific to the Mt. Logan region. The Mt. Logan Na^+ record is used to develop a 292 a (1688-1979) reconstruction of the AleuLow revealing a dramatic intensification of atmospheric circulation over the North Pacific region since the 20th century. Mean SLP of the AleuLow was about 1 hPa lower during the 20th century than during prior periods. The strongest deepening of the AleuLow appeared in the 1950s. Significant correlations are also found between the Mt. Logan AleuLow proxy series and the Pacific decadal oscillation (PDO) and Pacific circulation (PC) index during the 20th century. Evolutionary spectral analysis of the proxy record shows significant periodicities from 15 to 30 a consistent with PDO fluctuations and the bidecadal oscillation of North Pacific atmosphere-ocean circulation. A period of 11 a in the AleuLow record may be associated with the Schwabe 11-a cycle of sunspot activity. Additional longer ice core records from this region will aid in the efforts to further understand the climatic change over the North Pacific region.
文摘A close correlation between δ 18O in the shallow ice core in Dasuopu Glacier of the Tibetan Plateau and large scale SST is found. The marked correlated regions are mainly distributed in the ocean currents of the Oceans. The SST in different sea regions influences the precipitation and vapor origin of Dasuopu Glacier by way of its actions on atmospheric circulation. When the circulation situation favoring the transportation of oceanic vapor towards the glaciers of the southern Plateau appears, the δ18O in precipitation decreases, when that infavoring the transportation of oceanic vapor but favoring the transportation of the inland vapor towards the glaciers appears. the δ 18O in precipitation increases. Among various SST and circulation factors influencing δi8O in the ice core, the mean SST anomalies in the region A5 of the Northern Pacific Current and the position of the north boundary of Subtropical high over the South China Ocean have the important impact on the δ 18O in Dasuopu Glacier during midwinter,the mean SST anomalies in the region B of the Northern Pacific Current, the center position of the arctic vortex over the Northern Hemisphere and the strength of the arctic vortex over the Pacific have the important impact on the δ 18O in the Dasuopu Glacier during midsummer. The variations of these factors restrict the magnitude of δ 18O in the ice core, and their influence all have the omen.
基金supported by the Global Change Research Program of China (No. 2013CBA01801)the Natural Science Foundation of China (Nos. 41225002, 41371091, and 41121001)
文摘Ice documentation and response to prominent warming, especially after the 1990s, is further investigated because it is concerned whether ice records have absence. A δ^18O series of a Laohugou (LHG) shallow ice core (20.12 m) in the northeastern Tibetan Plateau was reconstructed covering the period of 1960–2006. The ice core δ^18O record had sig-nificant positive correlations with the warm season (May–September) air temperatures at adjacent meteorological stations and the 500 hPa temperatures in boreal China, indicating that the δ^18O record could be considered a credible proxy of regional temperature. A clear, cold temperature event in 1967 and rapid warming after the 1990s were captured in the LHG δ^18O series, revealing that it could record extreme air-temperature events on both regional and global scales. The LHG δ^18O variations had evident positive correlations with both the summer surface outgoing longwave radiation (OLR) in the Mongolia region and the summer meridional wind at 500 hPa in the LHG region during 1960–2006, suggesting that the increased OLR in the Mongolia region might have intensified the Mongolia Low and expanded the pressure gradient to the LHG region (the Shulehe High), which would have pushed the westerlies further north and suppressed southward incursions of cold air into the LHG region, and thus augmented the temperature rise. The regional atmospheric circulation difference (1985–2006 minus 1960–1984) suggested that the anticyclone in the Mongolia region might have developed the easterly wind, which transported warmer air from the east toward the LHG region and weakened the cold penetration of the westerlies, resulting in the temperature rise since the middle 1980s.
文摘Cloudy bands are typical stratigraphic structure in deep ice core. Detailed recording of cloudy bands is important for dating of ice core since pair of series cloudy band and clear layer is corresponds to annual layer and it sometimes corresponds to volcanic ash layer. We developed two type scanners, transmitted light method and laser tomograph method for the stratigraphic study. Measurements were carried out for NGRIP deep ice core, which containing many cloudy bands, using the two type scanners and digital camera. We discussed about the possibility of identification of cloudy bands by each method and about advantage and disadvantage of measurements and their results.
文摘Studies on Chinese loess and a comparison with Antarctic ice cores provided a general pattern of global environmental change and the regional differentiation over last 150,000 years. Climatic change revealed by magnetic susceptibility of Linxia loess section in China was paralled with temperature variation revealed by δD of Vostok ice core over last 150,000 years, which indicates a pattern of climatic change tendencies on a long-scale (thousand years). However, the ranges of variation at the same phase, especially, during the last Inter-glacial age (80,000-140,000 a.B.P.) were more different between Chinese loess sections and Antarctic ice cores.
文摘The sea ice core (1. 6m) and lake ice core (1. 5m) were taken respectively from sea sampling site and Ace Lake near Davis Station, Vestfold Hills, Antarctica in November and October, 1988. The concentrations of amino acids in each 10cm of ice cores were determined by High Pressure Liquid Chromatography (HPLC). The results showed that the concentrations of amino acids revealed seasonal variation during the year. The highest concentration of amino acids, which was 30. 92 /μmol/ml, were found in the bottom of sea ice core, and it was approximately 45 μmol/ml in the lake ice core. The lowest concentration was approximately 8. 0μmol/ml which is presented in surface of the sea ice core, but it was 14.0μmol/ml which was found in 60cm section of lake ice core.The seasonal variation process of concentration of amino acids were much similar to that of phytoplankton cells number in sea ice core, and the distribution and seasonal variation rate of individual amino acids were also much similar in each ice core sections. We suggest that the uniform spectrum of amino acids is probably derived from a peptide cell source and those amino acids were not utilized by organism.
基金supported by Chinese Academy of Sciences(Grant No.KZCX1-SW-01-10,KZCX3-SW-339)Ministry of Science and Technolo-gy of China(Grant No.2001CB711001)National Natural Science Foundation of China(Grant No.40121101)
文摘The reconstruction of air trapped in ice cores provides us the most direct information about atmospheric CH4 variations in the past history. Ice core records from the "Three Poles (Antarctica, Greenland and Tibetan Plateau)" reveal the detailed fluctuations of atmospheric CH4 concentration with time and are allowed to quantify the CH4 differences among latitudes. These data are indispensably in the farther study of the relationship between greenhouse gases and climatic change, and of the past changes in terrestrial CH4 emissions. Ice cores reconstruction indicates that atmospheric CH4 concentration has increased quickly since industrialization, and the present day's level of atmospheric CH4 (1800 ppby) is unprecedented during the past Glacial-Interglacial climate cycles.
文摘Affiliation unit: Lanzhou Institute of Glaciology and Cold Regions Environment, CAS Brief history: The Laboratory of Ice Core and Cold Regions Environment (LICCRE) was formally approved to open domestically and internationally by Chinese Academy of Sciences in April 1997. It is attached to the Lanzhou Institute of Glaciology and Geocryology, CAS.