The linear analysis of the influence of diamagnetic effect and toroidal rotation at the edge of tokamak plasmas with BOUT++ is discussed in this paper. This analysis is done by solving the dispersion relation, which i...The linear analysis of the influence of diamagnetic effect and toroidal rotation at the edge of tokamak plasmas with BOUT++ is discussed in this paper. This analysis is done by solving the dispersion relation, which is calculated through the numerical integration of the terms with different physics. This method is able to reveal the contributions of the different terms to the total growth rate. The diamagnetic effect stabilizes the ideal ballooning modes through inhibiting the contribution of curvature. The toroidal rotation effect is also able to suppress the curvaturedriving term, and the stronger shearing rate leads to a stronger stabilization effect. In addition,through linear analysis using the energy form, the curvature-driving term provides the free energy absorbed by the line-bending term, diamagnetic term and convective term.展开更多
In the present paper,we first derive the eigenmode equation of the ideal ballooning mode in tokamak plasmas using a gyrokinetic equation.It is shown that the gyrokinetic eigenmode equation can be reduced to the magnet...In the present paper,we first derive the eigenmode equation of the ideal ballooning mode in tokamak plasmas using a gyrokinetic equation.It is shown that the gyrokinetic eigenmode equation can be reduced to the magnetohydrodynamic(MHD) form in the long wavelength limit when kinetic effects are ignored.Then,the global gyrokinetic toroidal code(GTC) is applied for simulations of the edge-localized ideal ballooning modes.The obtained mode structures are compared with the results of ideal MHD simulations.The observed scaling of the linear growth rate with the toroidal mode number is consistent with the ideal MHD theory.The simulation results verify the GTC capability of simulating MHD processes in toroidal plasmas.展开更多
Using the Fourier helical decomposition, we obtain the absolute statistical equilibrium spectra of left- and right-handed helical modes in the incompressible ideal Hall magnetohydrodynamics (MHD). It is shown that the...Using the Fourier helical decomposition, we obtain the absolute statistical equilibrium spectra of left- and right-handed helical modes in the incompressible ideal Hall magnetohydrodynamics (MHD). It is shown that the left-handed helical modes play a major role on the spectral transfer properties of turbulence when the generalized helicity and magnetic helicity are both positive. In contrast, the right-handed helical modes will play a major role when both are negative. Furthermore, we also find that if the generalized helicity and magnetic helicity have opposite signs, the tendency of equilibrium spectra to condense at the large or small wave numbers will be presented in different helical sectors. This indicates that the generalized helicity dominates the forward cascade and the magnetic helicity dominates the inverse cascade properties of the Hall MHD turbulence.展开更多
ICM (Idealized Cognitive Model) theory put forward by Lakoff has a guiding function in the analysis of discourse coherence without the coherent devices, based on which WANG Yin mentioned cognitive world. The cogniti...ICM (Idealized Cognitive Model) theory put forward by Lakoff has a guiding function in the analysis of discourse coherence without the coherent devices, based on which WANG Yin mentioned cognitive world. The cognitive world is of two kinds: ICM and background knowledge. The process of understanding discourse is the process of activating the human's ICM and background knowledge so that coherence is realized.展开更多
The theoretical and numerical studies on kinetic micro-instabilities,including ion temperature gradient(ITG) driven modes,trapped electron modes(TEMs) in the presence of impurity ions as well as impurity modes(IM...The theoretical and numerical studies on kinetic micro-instabilities,including ion temperature gradient(ITG) driven modes,trapped electron modes(TEMs) in the presence of impurity ions as well as impurity modes(IMs),induced by impurity density gradient alone,in toroidal magnetized plasmas,such as tokamak and reversed-field pinch(RFP) are reviewed briefly.The basic theory for IMs,the electrostatic instabilities in tokamak and RFP plasmas are discussed.The observations of hybrid and coexistence of the instabilities are categorized systematically.The effects of impurity ions on electromagnetic instabilities such as ITG modes,the kinetic ballooning modes(KBMs) and kinetic shear Alfvén modes induced by impurity ions in tokamak plasmas of finite β(=plasma pressure/magnetic pressure) are analyzed.The interesting topics for future investigation are suggested.展开更多
基金supported by program of Fusion Reactor Physics and Digital Tokamak with the CAS ‘OneThree-Five’ Strategic Planningthe JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics (NSFC: No. 11261140328 and NRF: No. z012K2A2A6000443)+1 种基金supported by National Natural Science Foundation of China under Contract Nos. 11405215, 11505236 and 11675217the National Magnetic Confinement Fusion Science Program of China under Contract Nos. 2015GB101003, 2014GB106001 and 2013GB111002
文摘The linear analysis of the influence of diamagnetic effect and toroidal rotation at the edge of tokamak plasmas with BOUT++ is discussed in this paper. This analysis is done by solving the dispersion relation, which is calculated through the numerical integration of the terms with different physics. This method is able to reveal the contributions of the different terms to the total growth rate. The diamagnetic effect stabilizes the ideal ballooning modes through inhibiting the contribution of curvature. The toroidal rotation effect is also able to suppress the curvaturedriving term, and the stronger shearing rate leads to a stronger stabilization effect. In addition,through linear analysis using the energy form, the curvature-driving term provides the free energy absorbed by the line-bending term, diamagnetic term and convective term.
基金supported by U.S.Department of Energy(DOE) SciDAC GSEP Center and National Special Research Program of China for ITER
文摘In the present paper,we first derive the eigenmode equation of the ideal ballooning mode in tokamak plasmas using a gyrokinetic equation.It is shown that the gyrokinetic eigenmode equation can be reduced to the magnetohydrodynamic(MHD) form in the long wavelength limit when kinetic effects are ignored.Then,the global gyrokinetic toroidal code(GTC) is applied for simulations of the edge-localized ideal ballooning modes.The obtained mode structures are compared with the results of ideal MHD simulations.The observed scaling of the linear growth rate with the toroidal mode number is consistent with the ideal MHD theory.The simulation results verify the GTC capability of simulating MHD processes in toroidal plasmas.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11375190 and 11547137
文摘Using the Fourier helical decomposition, we obtain the absolute statistical equilibrium spectra of left- and right-handed helical modes in the incompressible ideal Hall magnetohydrodynamics (MHD). It is shown that the left-handed helical modes play a major role on the spectral transfer properties of turbulence when the generalized helicity and magnetic helicity are both positive. In contrast, the right-handed helical modes will play a major role when both are negative. Furthermore, we also find that if the generalized helicity and magnetic helicity have opposite signs, the tendency of equilibrium spectra to condense at the large or small wave numbers will be presented in different helical sectors. This indicates that the generalized helicity dominates the forward cascade and the magnetic helicity dominates the inverse cascade properties of the Hall MHD turbulence.
文摘ICM (Idealized Cognitive Model) theory put forward by Lakoff has a guiding function in the analysis of discourse coherence without the coherent devices, based on which WANG Yin mentioned cognitive world. The cognitive world is of two kinds: ICM and background knowledge. The process of understanding discourse is the process of activating the human's ICM and background knowledge so that coherence is realized.
基金supported by National Natural Science Foundation of China(Nos.11475057 and 11575158)the National Key R&D Program of China under Grant No.2017YFE0300405
文摘The theoretical and numerical studies on kinetic micro-instabilities,including ion temperature gradient(ITG) driven modes,trapped electron modes(TEMs) in the presence of impurity ions as well as impurity modes(IMs),induced by impurity density gradient alone,in toroidal magnetized plasmas,such as tokamak and reversed-field pinch(RFP) are reviewed briefly.The basic theory for IMs,the electrostatic instabilities in tokamak and RFP plasmas are discussed.The observations of hybrid and coexistence of the instabilities are categorized systematically.The effects of impurity ions on electromagnetic instabilities such as ITG modes,the kinetic ballooning modes(KBMs) and kinetic shear Alfvén modes induced by impurity ions in tokamak plasmas of finite β(=plasma pressure/magnetic pressure) are analyzed.The interesting topics for future investigation are suggested.