A brand new direct and adaptive slicing approach is proposed, which canapparently improve the part accuracy and reduce the building time. At least two stages are includedin this operation: getting the crossing contour...A brand new direct and adaptive slicing approach is proposed, which canapparently improve the part accuracy and reduce the building time. At least two stages are includedin this operation: getting the crossing contour of the cutting plane with the solid part anddetermining the layer thickness. Apart from usual SPI algorithm, slicing of the solid model has itsspecial requirements. Enabling the contour line segments of the cross-section as long as possible isone of them, which is for improving manufacturing efficiency and is reached by adaptively adjustingthe step direction and the step size at every crossing point to obtain optimized secant height. Thelayer thickness determination can be divided into two phases: the geometry-based thicknessestimation and the material-based thickness verifying. During the former phase, the geometrytolerance is divided into two parts: a variety of curves are approximated by a circular arc, whichintroduces the first part, and the deviation error between the contour line in LM process and thecircular arc generates the second part. The latter phase is mainly verifying the layer thicknessestimated in the former stage and determining a new one if necessary. In addition, an example usingthis slicing algorithm is also illustrated.展开更多
以基于极化平面的波达角(Direction of Arrival,DOA)估计算法为基础,针对近地面天线受地面反射波影响从而极大地影响DOA估计的准确性问题,对如何去除地面反射波的影响进行深入研究.分别采用理想地面近似法、反射系数法和阵列抑制算法进...以基于极化平面的波达角(Direction of Arrival,DOA)估计算法为基础,针对近地面天线受地面反射波影响从而极大地影响DOA估计的准确性问题,对如何去除地面反射波的影响进行深入研究.分别采用理想地面近似法、反射系数法和阵列抑制算法进行仿真试验,对比和分析这三种算法的优缺点,以及各自的适用性.理论分析和仿真试验表明:理想地面近似算法在实际地面参数与理想导电平面相近时,具有准确的计算结果,但在其他情况下计算结果与真实值误差很大;反射系数法通过地面的电导率σ、相对介电常数εr以及入射波的极角θ分别求出地面的水平反射系数和垂直反射系数,从而准确估算出来波方向,但由于该方法需要预先知道地面参数,故其应用场景受到了一定的限制;阵列抑制算法巧妙地利用地面反射波和直达波在相位延迟和入射角方面的关系,通过移相操作,生成抑制反射波的新数据,再对其进行处理,准确计算出DOA.通过比较分析可以得出,阵列抑制算法可用于任何类型的实际地面,且无需知道实际地面参数,同时该算法具有很好的准确性,因此其应用场景不受限制,具有很好的理论研究和实际应用价值.展开更多
基金This project is supported by National Natural Science Foundation of China (No.59975015, No.50275018) Doctoral Foundation of Ministry of Edu-cation of China (No.1999014102).
文摘A brand new direct and adaptive slicing approach is proposed, which canapparently improve the part accuracy and reduce the building time. At least two stages are includedin this operation: getting the crossing contour of the cutting plane with the solid part anddetermining the layer thickness. Apart from usual SPI algorithm, slicing of the solid model has itsspecial requirements. Enabling the contour line segments of the cross-section as long as possible isone of them, which is for improving manufacturing efficiency and is reached by adaptively adjustingthe step direction and the step size at every crossing point to obtain optimized secant height. Thelayer thickness determination can be divided into two phases: the geometry-based thicknessestimation and the material-based thickness verifying. During the former phase, the geometrytolerance is divided into two parts: a variety of curves are approximated by a circular arc, whichintroduces the first part, and the deviation error between the contour line in LM process and thecircular arc generates the second part. The latter phase is mainly verifying the layer thicknessestimated in the former stage and determining a new one if necessary. In addition, an example usingthis slicing algorithm is also illustrated.
文摘以基于极化平面的波达角(Direction of Arrival,DOA)估计算法为基础,针对近地面天线受地面反射波影响从而极大地影响DOA估计的准确性问题,对如何去除地面反射波的影响进行深入研究.分别采用理想地面近似法、反射系数法和阵列抑制算法进行仿真试验,对比和分析这三种算法的优缺点,以及各自的适用性.理论分析和仿真试验表明:理想地面近似算法在实际地面参数与理想导电平面相近时,具有准确的计算结果,但在其他情况下计算结果与真实值误差很大;反射系数法通过地面的电导率σ、相对介电常数εr以及入射波的极角θ分别求出地面的水平反射系数和垂直反射系数,从而准确估算出来波方向,但由于该方法需要预先知道地面参数,故其应用场景受到了一定的限制;阵列抑制算法巧妙地利用地面反射波和直达波在相位延迟和入射角方面的关系,通过移相操作,生成抑制反射波的新数据,再对其进行处理,准确计算出DOA.通过比较分析可以得出,阵列抑制算法可用于任何类型的实际地面,且无需知道实际地面参数,同时该算法具有很好的准确性,因此其应用场景不受限制,具有很好的理论研究和实际应用价值.