Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identi...Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identify pollution sources,and accurate information on pollution sources is the premise of efficient remediation.Then,an appropriate pollution remediation scheme should be developed according to information on pollution sources,site conditions,and economic costs.The methods for identifying pollution sources mainly include geophysical exploration,geochemistry,isotopic tracing,and numerical modeling.Among these identification methods,only the numerical modeling can recognize various information on pollution sources,while other methods can only identify a certain aspect of pollution sources.The remediation technologies of groundwater can be divided into in-situ and ex-situ remediation technologies according to the remediation location.The in-situ remediation technologies enjoy low costs and a wide remediation range,but their remediation performance is prone to be affected by environmental conditions and cause secondary pollution.The ex-situ remediation technologies boast high remediation efficiency,high processing capacity,and high treatment concentration but suffer high costs.Different methods for pollution source identification and remediation technologies are applicable to different conditions.To achieve the expected identification and remediation results,it is feasible to combine several methods and technologies according to the actual hydrogeological conditions of contaminated sites and the nature of pollutants.Additionally,detailed knowledge about the hydrogeological conditions and stratigraphic structure of the contaminated site is the basis of all work regardless of the adopted identification methods or remediation technologies.展开更多
[Objectives]To establish a TLC and content determination method of Pileostegia tomentellal,with umbelliferone as the indicator component.[Methods]TLC identification was performed by silica gel G thin layer plate with ...[Objectives]To establish a TLC and content determination method of Pileostegia tomentellal,with umbelliferone as the indicator component.[Methods]TLC identification was performed by silica gel G thin layer plate with n-hexane-ethyl acetate(4:3)as the developing agent,and the plate was examined by UV lamp(365 nm).The umbelliferone content was determined by HPLC:Inertsil ODS-3 C 18 column(4.60 mm×250 mm,5μm);mobile phase acetonitrile-0.2%phosphoric acid gradient elution;detection wavelength 320 nm,flow rate 1.0 mL/min,column temperature 30℃,injection volume 10μL.[Results]The chromatogram of P.tomentellal showed the same color spot in the same position as that of reference medicinal material,and the spot was clear with good specificity.Umbelliferone showed a good linear relationship when the injection volume was 2.63-131.27μg/mL(R^(2)=0.9997).The average recovery of umbelliferone in the low,middle and high adding groups of P.tomentellal was 99.57%and the RSD was 2.15%.[Conclusions]The method can effectively identify Yao medicine P.tomentellal and accurately determine the content of umbelliferone in medicinal materials,which will provide a scientific basis for the development and utilization of medicinal resources of Yao medicine P.tomentellal.展开更多
The problem of mine water source has always been an important hidden danger in mine safety production.The water source under the mine working face may lead to geological disasters,such as mine collapse and water disas...The problem of mine water source has always been an important hidden danger in mine safety production.The water source under the mine working face may lead to geological disasters,such as mine collapse and water disaster.The research background of mine water source identification involves many fields such as mining production,environmental protection,resource utilization and technological progress.It is a comprehensive and interdisciplinary subject,which helps to improve the safety and sustainability of mine production.Therefore,timely and accurate identification and control of mine water source is very important to ensure mine production safety.Laser-Induced Fluorescence(LIF)technology,characterized by high sensitivity,specificity,and spatial resolution,overcomes the time-consuming nature of traditional chemical methods.In this experiment,sandstone water and old air water were collected from the Huainan mining area as original samples.Five types of mixed water samples were prepared by varying their proportions,in addition to the two original water samples,resulting in a total of seven different water samples for testing.Four preprocessing methods,namely,MinMaxScaler,StandardScaler,Standard Normal Variate(SNV)transformation,and Centering Transformation(CT),were applied to preprocess the original spectral data to reduce noise and interference.CT was determined as the optimal preprocessing method based on class discrimination,data distribution,and data range.To maintain the original data features while reducing the data dimension,including the original spectral data,five sets of data were subjected to Principal Component Analysis(PCA)and Linear Discriminant Analysis(LDA)dimensionality reduction.Through comparing the clustering effect and Fisher's ratio of the first three dimensions,PCA was identified as the optimal dimensionality reduction method.Finally,two neural network models,CT+PCA+CNN and CT+PCA+ResNet,were constructed by combining Convolutional Neural Networks(CNN)and Residual Neural Networks(ResNet),respectively.When selecting the neural network models,the training time,number of iterative parameters,accuracy,and cross-entropy loss function in the classification problem were compared to determine the model best suited for water source data.The results indicated that CT+PCA+ResNet was the optimal approach for water source identification in this study.展开更多
The Peer-to-Peer(P2P)network traffic identification technology includes Transport Layer Identification(TLI)and Deep Packet Inspection(DPI)methods.By analyzing packets of the transport layer and the traffic characteris...The Peer-to-Peer(P2P)network traffic identification technology includes Transport Layer Identification(TLI)and Deep Packet Inspection(DPI)methods.By analyzing packets of the transport layer and the traffic characteristic in the P2P system,TLI can identify whether or not the network data flow belongs to the P2P system.The DPI method adopts protocol analysis technology and reverting technology.It picks up data from the P2P application layer and analyzes the characteristics of the payload to judge if the network traffic belongs to P2P applications.Due to its accuracy,robustness and classifying ability,DPI is the main method used to identify P2P traffic.Adopting the advantages of TLI and DPI,a precise and efficient technology for P2P network traffic identification can be designed.展开更多
Hydrogen,a clean and versatile energy carrier,has gained significant attention as a potential solution for addressing the challenges of climate change and energy sustainability.Efficient hydrogen production relies hea...Hydrogen,a clean and versatile energy carrier,has gained significant attention as a potential solution for addressing the challenges of climate change and energy sustainability.Efficient hydrogen production relies heavily on the development of advanced materials that enable cost-effective and sustainable methods.This review article presents a comprehensive overview of cutting-edge materials used for hydrogen production,covering both traditional and emerging technologies.This article begins by briefly introducing the importance of hydrogen as a clean energy carrier and various methods used for hydrogen production.This emphasizes the critical role of these materials in enabling efficient hydrogen generation.Traditional methods,such as steam methane reforming,coal gasification,biomass gasification,and water electrolysis,are discussed,highlighting the materials used and their advantages and limitations.This review then focuses on emerging technologies that have shown promise for achieving efficient hydrogen production.Photocatalytic water splitting is explored with an emphasis on recent advancements in semiconductor-based photocatalysts and nanostructured materials for enhanced photocatalysis.Solid oxide electrolysis cells(SOEC)are examined,discussing high-temperature electrolysis materials and advancements in electrolytes and electrode materials.Biological hydrogen production and chemical looping are also discussed,highlighting the use of microorganisms,bioengineered systems,metal oxides as oxygen carriers,and catalysts for improved hydrogen generation.Advanced characterization techniques,including X-ray diffraction,spectroscopy,scanning electron microscopy,transmission electron microscopy,X-ray photoelectron spectroscopy,Auger electron spectroscopy,thermogravimetric analysis,and differential scanning calorimetry,have been used to gain insight into the properties and performances of materials.This review concludes by addressing the challenges and prospects in the field of hydrogen production materials.This highlights the importance of the durability,stability,cost-effectiveness,scalability,and integration of materials into large-scale hydrogen pchiroduction systems.This article also discusses the emerging trends and potential breakthroughs that could shape the future of hydrogen production.展开更多
With in-depth development of the Internet of Things(IoT)in various industries,the informatization process of various industries has also entered the fast lane.This article aims to solve the supply chain process proble...With in-depth development of the Internet of Things(IoT)in various industries,the informatization process of various industries has also entered the fast lane.This article aims to solve the supply chain process problem in e-commerce,focusing on the specific application of Internet of Things technology in e-commerce.Warehousing logistics is an important link in today’s e-commerce transactions.This article proposes a distributed analysis method for RFID-based e-commerce warehousing process optimization and an e-commerce supply chain management process based on Internet of Things technology.This article first introduces the advantages and disadvantages of shared IoT identification technology and the IoT resource sharing platform based on the three-layer abstract data model and representational state transfer(REST)style.Combining actual IoT applications and the characteristics of an existing platform,a REST-based IoT resource sharing platform is proposed.Combined with actual projects,a REST-based IoT resource sharing platform was built,and key technology experiments were conducted for verification.Finally,optimizing the e-commerce supply chain management process under Internet of Things technology and explaining the advantages of optimized e-commerce supply chain management are discussed.Research on this subject provides a theoretical basis for the application of the Internet of Things in e-commerce and has practical significance and practical value for managing service capabilities and service levels in e-commerce.展开更多
[Objectives]This study was conducted to establish simple, efficient, stable, standardized and practical identification methods for sugarcane resistance to white leaf disease(SCWL), and promote the breeding for sugarca...[Objectives]This study was conducted to establish simple, efficient, stable, standardized and practical identification methods for sugarcane resistance to white leaf disease(SCWL), and promote the breeding for sugarcane resistance to SCWL. [Methods]The identification technology of sugarcane resistance to SCWL was systematically studied and explored from the aspects of sugarcane material treatment and planting, inoculation liquid preparation, inoculation method, disease investigation, grading standard formulation, etc., and two sets of simple, efficient, stable, standardized and practical accurate identification methods for sugarcane resistance to SCWL were created for the first time, namely, the seed cane coating inoculation method and the stem-cutting inoculation method at the growth stage. The seed cane coating inoculation method includes the steps of directly screening SCWL phytoplasma, extracting juice from cane and adding 10 times of sterile water to prepare an inoculation liquid, spraying seed cane on plastic film to keep moisture, planting the inoculated materials in barrels in an insect-proof greenhouse for cultivation, investigating the incidence rate 30 d after inoculation, and evaluating the disease resistance according to the 1-5 level standard. The method of stem-cutting inoculation includes the steps of directly screening sugarcane stems carrying SCWL phytoplasma and adding 10 times of sterile water to prepare an inoculation liquid, cultivating the identification materials in an insect-proof greenhouse, dropping 100 μl of the inoculation liquid into each root incision with a pipette gun at the age of 6 months, investigating the incidence rate 20 d after planting, and evaluating the disease resistance according to the 1-5 level standard. [Results] The two methods are similar to the natural transmission method. After inoculation, SCML occurred significantly, with high sensitivity and good reproducibility. The results of resistance identification were consistent with those of natural disease in the field. Through the two inoculation methods and field natural disease investigation, the resistance of 10 main cultivars to SCML was identified, which was true and reliable. [Conclusions] This study can provide standard varieties for identification of SCML resistance in the future.展开更多
Purpose-This study aims to ensure the operation safety of high speed trains,it is necessary to carry out nondestructive monitoring of the tensile damage of the gearbox housing material in rail time,yet the traditional...Purpose-This study aims to ensure the operation safety of high speed trains,it is necessary to carry out nondestructive monitoring of the tensile damage of the gearbox housing material in rail time,yet the traditional tests of mechanical property can hardly meet this requirement.Design/methodology/approach-In this study the acoustic emission(AE)technology is applied in the tensile tests of the gearbox housing material of an high-speed rail(HSR)train,during which the acoustic signatures are acquired for parameter analysis.Afterward,the support vector machine(SVM)classifier is introduced to identify and classify the characteristic parameters extracted,on which basis the SVM is improved and the weighted support vector machine(WSVM)method is applied to effectively reduce the misidentification of the SVM classifier.Through the study of the law of relations between the characteristic values and the tensile life,a degradation model of the gearbox housing material amid tensile is built.Findings-The results show that the growth rate of the logarithmic hit count of AE signals and that of logarithmic amplitude can well characterize the stage of the material tensile process,and the WSVM method can improve the classification accuracy of the imbalanced data to above 94%.The degradation model built can identify the damage occurred to the HSR gearbox housing material amid the tensile process and predict the service life remains.Originality/value-The results of this study provide new concepts for the life prediction of tensile samples,and more further tests should be conducted to verify the conclusion of this research.展开更多
Template identification technology (TIT) is designed for the scenarios where a batch of disarmed nuclear weapons or components would be dismantled to observe a nuclear disarmament treaty. The core function played by...Template identification technology (TIT) is designed for the scenarios where a batch of disarmed nuclear weapons or components would be dismantled to observe a nuclear disarmament treaty. The core function played by the TIT is to make a judgment on whether the verified item belongs to a certain kind of nuclear weapons or component (NW/NC) or to which kind the verified item belongs. This paper analyses the functions played by the TIT in the process of NW/NC dismantlement, and proposes that two phases would be followed when applying the TIT: firstly to establish NW/NC templates with a sample of size n drawn from a certain kind of disarmament NW; secondly to authenticate NW/NC by means of the TIT. This paper also expatiates some terms related to the concept of the TIT and investigates on the development status of NW/NC TIT based on radiation signatures. The study concludes that the design of template structure is crucial to the establishment of an effective TIT and that starting from different research angles and aiming at the same goal of classification different template structures and corresponding template identification methods can be built up to meet specific identification requirements.展开更多
Objective To propose a method for identifying cooperation partners and technology opportunities based on technological similarity and technological capability analysis at the critical moment for the survival of small ...Objective To propose a method for identifying cooperation partners and technology opportunities based on technological similarity and technological capability analysis at the critical moment for the survival of small and medium-sized vaccine companies.This method can provide a direction for small and medium-sized enterprises that lack human and financial resources to make full use of its existing technologies.Methods Data analysis was carried out based on patent data.First,through cosine similarity and patent index evaluation,companies with high technological similarity and strong technological capabilities were selected as the target of cooperation.Then evaluation index system of technological development potential was built from three dimensions:technological competitiveness,technological creativity,and potential for industrialization.AHP-CRITIC method was used to determine the comprehensive development potential of each technology.Finally,technology opportunities based on K-means and text mining were identified.Results and Conclusion This method can help small and medium vaccine companies in China to identify technological opportunities and provide directions for product development.展开更多
In order to construct a resource-saving and environment- friendly society, the advantages of radio frequency identification (RFID) were considered. And it put forward the idea of introducing RFID in the recycling ac...In order to construct a resource-saving and environment- friendly society, the advantages of radio frequency identification (RFID) were considered. And it put forward the idea of introducing RFID in the recycling activities of waste products. Taking into account such elements as the technical level of RFID, cost saving from remanufacturing and the cost of RFID tags, both centralized and decentralized supply chain models with different participants in waste product collection were created, in order to determine the optimal pricing strategy and RFID technical level. In the end, sensitivity analyses were conducted to analyze the impacts of scaling parameter for additional increased recovery rate with RFED on pricing and RFID technology level, and impacts of cost saving on the profits of participants in different remanufacturing closed-loop supply chain models.展开更多
Five kinds of traditional flower Chinese medicine powders (TFCMD) were identified using tuneable liquid spectral imaging instrument, to discuss the application range and advantages of spectral imaging technology in Ch...Five kinds of traditional flower Chinese medicine powders (TFCMD) were identified using tuneable liquid spectral imaging instrument, to discuss the application range and advantages of spectral imaging technology in Chinese medicine identification and analysis field. The testing system is the liquid crystal multispectral imaging system designed by ourselves. All the tests are standard samples supplied by National Institute for Drug Control. The spectral cubes of Campsis grandiflora, Carthamus tinctorius, Albizzia julibrissin, Dendranthema morifolium, and Dendranthema indicum were captured, and then the normalized characteristic spectral curves of them were picked up. The spectral resolution is 5 nm, and the spectral range is 400 nm - 650 nm. The result shows that different TFCMD has different normalized characteristic fluorescence spectral curve. Spectral imaging technology can be used to identify TFCMD, and the testing course is convenient, quick, noninvasive and without pre-treatment.展开更多
The meandering channel deposit of the upper member of Neogene Guantao Formation in Shengli Chengdao extra-shallow sea oilfield is characterized by rapid change in sedimentary facies.In addition,affected by surface tid...The meandering channel deposit of the upper member of Neogene Guantao Formation in Shengli Chengdao extra-shallow sea oilfield is characterized by rapid change in sedimentary facies.In addition,affected by surface tides and sea water reverberation,the double sensor seismic data processed by conventional methods has low signal-to-noise ratio and low resolution,and thus cannot meet the needs of seismic description and oil-bearing fluid identification of thin reservoirs less than 10 meters thick in this area.The two-step high resolution frequency bandwidth expanding processing technology was used to improve the signal-to-noise ratio and resolution of the seismic data,as a result,the dominant frequency of the seismic data was enhanced from 30 Hz to 50 Hz,and the sand body thickness resolution was enhanced from 10 m to 6 m.On the basis of fine layer control by seismic data,three types of seismic facies models,floodplain,natural levee and point bar,were defined,and the intelligent horizon-facies controlled recognition technology was worked out,which had a prediction error of reservoir thickness of less than 1.5 m.Clearly,the description accuracy of meandering channel sand bodies has been improved.The probability semi-quantitative oiliness identification method of fluid by prestack multi-parameters has been worked out by integrating Poisson’s ratio,fluid factor,product of Lame parameter and density,and other prestack elastic parameters,and the method has a coincidence rate of fluid identification of more than 90%,providing solid technical support for the exploration and development of thin reservoirs in Shengli Chengdao extra-shallow sea oilfield,which is expected to provide reference for the exploration and development of similar oilfields in China.展开更多
基金funded by the National Natural Science Foundation of China(41907175)the Open Fund of Key Laboratory(WSRCR-2023-01)the project of the China Geological Survey(DD20230459).
文摘Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identify pollution sources,and accurate information on pollution sources is the premise of efficient remediation.Then,an appropriate pollution remediation scheme should be developed according to information on pollution sources,site conditions,and economic costs.The methods for identifying pollution sources mainly include geophysical exploration,geochemistry,isotopic tracing,and numerical modeling.Among these identification methods,only the numerical modeling can recognize various information on pollution sources,while other methods can only identify a certain aspect of pollution sources.The remediation technologies of groundwater can be divided into in-situ and ex-situ remediation technologies according to the remediation location.The in-situ remediation technologies enjoy low costs and a wide remediation range,but their remediation performance is prone to be affected by environmental conditions and cause secondary pollution.The ex-situ remediation technologies boast high remediation efficiency,high processing capacity,and high treatment concentration but suffer high costs.Different methods for pollution source identification and remediation technologies are applicable to different conditions.To achieve the expected identification and remediation results,it is feasible to combine several methods and technologies according to the actual hydrogeological conditions of contaminated sites and the nature of pollutants.Additionally,detailed knowledge about the hydrogeological conditions and stratigraphic structure of the contaminated site is the basis of all work regardless of the adopted identification methods or remediation technologies.
基金Supported by Self-funded Research Project of Administration of Traditional Chinese Medicine of Guangxi Zhuang Autonomous Region(GXZYA20220171)Young and Middle-aged Teachers Research Basic Ability Improvement Project of Colleges and Universities in Guangxi(2022KY0307)+5 种基金General Project of Guangxi University of Chinese Medicine(2022MS038)"Qingmiao Project"Talent Cultivation Program of Guangxi International Zhuang Medical Hospital(2022001)Key Project of Guangxi International Zhuang Medical Hospital(GZ2021010)High-level TCM Key Discipline(Zhuang Medical Science)Construction Project of State Administration of Traditional Chinese Medicine(zyyzdxk-2023165)Key Research and Development Project of Guangxi Provincial Department of Science and Technology(GK AB21196057)High-level Talent Cultivation Innovation Team Funding Project of Guangxi University of Chinese Medicine(2022A008).
文摘[Objectives]To establish a TLC and content determination method of Pileostegia tomentellal,with umbelliferone as the indicator component.[Methods]TLC identification was performed by silica gel G thin layer plate with n-hexane-ethyl acetate(4:3)as the developing agent,and the plate was examined by UV lamp(365 nm).The umbelliferone content was determined by HPLC:Inertsil ODS-3 C 18 column(4.60 mm×250 mm,5μm);mobile phase acetonitrile-0.2%phosphoric acid gradient elution;detection wavelength 320 nm,flow rate 1.0 mL/min,column temperature 30℃,injection volume 10μL.[Results]The chromatogram of P.tomentellal showed the same color spot in the same position as that of reference medicinal material,and the spot was clear with good specificity.Umbelliferone showed a good linear relationship when the injection volume was 2.63-131.27μg/mL(R^(2)=0.9997).The average recovery of umbelliferone in the low,middle and high adding groups of P.tomentellal was 99.57%and the RSD was 2.15%.[Conclusions]The method can effectively identify Yao medicine P.tomentellal and accurately determine the content of umbelliferone in medicinal materials,which will provide a scientific basis for the development and utilization of medicinal resources of Yao medicine P.tomentellal.
基金the Collaborative Innovation Center of Mine Intelligent Equipment and Technology,Anhui University of Science&Technology(CICJMITE202203)National Key R&D Program of China(2018YFC0604503)Anhui Province Postdoctoral Research Fund Funding Project(2019B350).
文摘The problem of mine water source has always been an important hidden danger in mine safety production.The water source under the mine working face may lead to geological disasters,such as mine collapse and water disaster.The research background of mine water source identification involves many fields such as mining production,environmental protection,resource utilization and technological progress.It is a comprehensive and interdisciplinary subject,which helps to improve the safety and sustainability of mine production.Therefore,timely and accurate identification and control of mine water source is very important to ensure mine production safety.Laser-Induced Fluorescence(LIF)technology,characterized by high sensitivity,specificity,and spatial resolution,overcomes the time-consuming nature of traditional chemical methods.In this experiment,sandstone water and old air water were collected from the Huainan mining area as original samples.Five types of mixed water samples were prepared by varying their proportions,in addition to the two original water samples,resulting in a total of seven different water samples for testing.Four preprocessing methods,namely,MinMaxScaler,StandardScaler,Standard Normal Variate(SNV)transformation,and Centering Transformation(CT),were applied to preprocess the original spectral data to reduce noise and interference.CT was determined as the optimal preprocessing method based on class discrimination,data distribution,and data range.To maintain the original data features while reducing the data dimension,including the original spectral data,five sets of data were subjected to Principal Component Analysis(PCA)and Linear Discriminant Analysis(LDA)dimensionality reduction.Through comparing the clustering effect and Fisher's ratio of the first three dimensions,PCA was identified as the optimal dimensionality reduction method.Finally,two neural network models,CT+PCA+CNN and CT+PCA+ResNet,were constructed by combining Convolutional Neural Networks(CNN)and Residual Neural Networks(ResNet),respectively.When selecting the neural network models,the training time,number of iterative parameters,accuracy,and cross-entropy loss function in the classification problem were compared to determine the model best suited for water source data.The results indicated that CT+PCA+ResNet was the optimal approach for water source identification in this study.
基金This work was funded by the National Natural Science Foundation of China under Grant60473090.
文摘The Peer-to-Peer(P2P)network traffic identification technology includes Transport Layer Identification(TLI)and Deep Packet Inspection(DPI)methods.By analyzing packets of the transport layer and the traffic characteristic in the P2P system,TLI can identify whether or not the network data flow belongs to the P2P system.The DPI method adopts protocol analysis technology and reverting technology.It picks up data from the P2P application layer and analyzes the characteristics of the payload to judge if the network traffic belongs to P2P applications.Due to its accuracy,robustness and classifying ability,DPI is the main method used to identify P2P traffic.Adopting the advantages of TLI and DPI,a precise and efficient technology for P2P network traffic identification can be designed.
文摘Hydrogen,a clean and versatile energy carrier,has gained significant attention as a potential solution for addressing the challenges of climate change and energy sustainability.Efficient hydrogen production relies heavily on the development of advanced materials that enable cost-effective and sustainable methods.This review article presents a comprehensive overview of cutting-edge materials used for hydrogen production,covering both traditional and emerging technologies.This article begins by briefly introducing the importance of hydrogen as a clean energy carrier and various methods used for hydrogen production.This emphasizes the critical role of these materials in enabling efficient hydrogen generation.Traditional methods,such as steam methane reforming,coal gasification,biomass gasification,and water electrolysis,are discussed,highlighting the materials used and their advantages and limitations.This review then focuses on emerging technologies that have shown promise for achieving efficient hydrogen production.Photocatalytic water splitting is explored with an emphasis on recent advancements in semiconductor-based photocatalysts and nanostructured materials for enhanced photocatalysis.Solid oxide electrolysis cells(SOEC)are examined,discussing high-temperature electrolysis materials and advancements in electrolytes and electrode materials.Biological hydrogen production and chemical looping are also discussed,highlighting the use of microorganisms,bioengineered systems,metal oxides as oxygen carriers,and catalysts for improved hydrogen generation.Advanced characterization techniques,including X-ray diffraction,spectroscopy,scanning electron microscopy,transmission electron microscopy,X-ray photoelectron spectroscopy,Auger electron spectroscopy,thermogravimetric analysis,and differential scanning calorimetry,have been used to gain insight into the properties and performances of materials.This review concludes by addressing the challenges and prospects in the field of hydrogen production materials.This highlights the importance of the durability,stability,cost-effectiveness,scalability,and integration of materials into large-scale hydrogen pchiroduction systems.This article also discusses the emerging trends and potential breakthroughs that could shape the future of hydrogen production.
文摘With in-depth development of the Internet of Things(IoT)in various industries,the informatization process of various industries has also entered the fast lane.This article aims to solve the supply chain process problem in e-commerce,focusing on the specific application of Internet of Things technology in e-commerce.Warehousing logistics is an important link in today’s e-commerce transactions.This article proposes a distributed analysis method for RFID-based e-commerce warehousing process optimization and an e-commerce supply chain management process based on Internet of Things technology.This article first introduces the advantages and disadvantages of shared IoT identification technology and the IoT resource sharing platform based on the three-layer abstract data model and representational state transfer(REST)style.Combining actual IoT applications and the characteristics of an existing platform,a REST-based IoT resource sharing platform is proposed.Combined with actual projects,a REST-based IoT resource sharing platform was built,and key technology experiments were conducted for verification.Finally,optimizing the e-commerce supply chain management process under Internet of Things technology and explaining the advantages of optimized e-commerce supply chain management are discussed.Research on this subject provides a theoretical basis for the application of the Internet of Things in e-commerce and has practical significance and practical value for managing service capabilities and service levels in e-commerce.
基金Supported by National Natural Science Foundation of China (31760504)China Agriculture Research System of MOF and MARA(CARS-170303)+1 种基金Yunling Industry and Technology Leading Talent Training Program (2018LJRC56)Special Fund for the Construction of Modern Agricultural Industry Technology System in Yunnan Province。
文摘[Objectives]This study was conducted to establish simple, efficient, stable, standardized and practical identification methods for sugarcane resistance to white leaf disease(SCWL), and promote the breeding for sugarcane resistance to SCWL. [Methods]The identification technology of sugarcane resistance to SCWL was systematically studied and explored from the aspects of sugarcane material treatment and planting, inoculation liquid preparation, inoculation method, disease investigation, grading standard formulation, etc., and two sets of simple, efficient, stable, standardized and practical accurate identification methods for sugarcane resistance to SCWL were created for the first time, namely, the seed cane coating inoculation method and the stem-cutting inoculation method at the growth stage. The seed cane coating inoculation method includes the steps of directly screening SCWL phytoplasma, extracting juice from cane and adding 10 times of sterile water to prepare an inoculation liquid, spraying seed cane on plastic film to keep moisture, planting the inoculated materials in barrels in an insect-proof greenhouse for cultivation, investigating the incidence rate 30 d after inoculation, and evaluating the disease resistance according to the 1-5 level standard. The method of stem-cutting inoculation includes the steps of directly screening sugarcane stems carrying SCWL phytoplasma and adding 10 times of sterile water to prepare an inoculation liquid, cultivating the identification materials in an insect-proof greenhouse, dropping 100 μl of the inoculation liquid into each root incision with a pipette gun at the age of 6 months, investigating the incidence rate 20 d after planting, and evaluating the disease resistance according to the 1-5 level standard. [Results] The two methods are similar to the natural transmission method. After inoculation, SCML occurred significantly, with high sensitivity and good reproducibility. The results of resistance identification were consistent with those of natural disease in the field. Through the two inoculation methods and field natural disease investigation, the resistance of 10 main cultivars to SCML was identified, which was true and reliable. [Conclusions] This study can provide standard varieties for identification of SCML resistance in the future.
基金supported by the National Natural Science Foundation of China (Grant No.U61273205).
文摘Purpose-This study aims to ensure the operation safety of high speed trains,it is necessary to carry out nondestructive monitoring of the tensile damage of the gearbox housing material in rail time,yet the traditional tests of mechanical property can hardly meet this requirement.Design/methodology/approach-In this study the acoustic emission(AE)technology is applied in the tensile tests of the gearbox housing material of an high-speed rail(HSR)train,during which the acoustic signatures are acquired for parameter analysis.Afterward,the support vector machine(SVM)classifier is introduced to identify and classify the characteristic parameters extracted,on which basis the SVM is improved and the weighted support vector machine(WSVM)method is applied to effectively reduce the misidentification of the SVM classifier.Through the study of the law of relations between the characteristic values and the tensile life,a degradation model of the gearbox housing material amid tensile is built.Findings-The results show that the growth rate of the logarithmic hit count of AE signals and that of logarithmic amplitude can well characterize the stage of the material tensile process,and the WSVM method can improve the classification accuracy of the imbalanced data to above 94%.The degradation model built can identify the damage occurred to the HSR gearbox housing material amid the tensile process and predict the service life remains.Originality/value-The results of this study provide new concepts for the life prediction of tensile samples,and more further tests should be conducted to verify the conclusion of this research.
文摘Template identification technology (TIT) is designed for the scenarios where a batch of disarmed nuclear weapons or components would be dismantled to observe a nuclear disarmament treaty. The core function played by the TIT is to make a judgment on whether the verified item belongs to a certain kind of nuclear weapons or component (NW/NC) or to which kind the verified item belongs. This paper analyses the functions played by the TIT in the process of NW/NC dismantlement, and proposes that two phases would be followed when applying the TIT: firstly to establish NW/NC templates with a sample of size n drawn from a certain kind of disarmament NW; secondly to authenticate NW/NC by means of the TIT. This paper also expatiates some terms related to the concept of the TIT and investigates on the development status of NW/NC TIT based on radiation signatures. The study concludes that the design of template structure is crucial to the establishment of an effective TIT and that starting from different research angles and aiming at the same goal of classification different template structures and corresponding template identification methods can be built up to meet specific identification requirements.
基金Source of the project:Research Topic on Science and Technology Plan Project of Liaoning Province[2017401021]:“Transformation and Protection of Scientific and Technological Achievements”.
文摘Objective To propose a method for identifying cooperation partners and technology opportunities based on technological similarity and technological capability analysis at the critical moment for the survival of small and medium-sized vaccine companies.This method can provide a direction for small and medium-sized enterprises that lack human and financial resources to make full use of its existing technologies.Methods Data analysis was carried out based on patent data.First,through cosine similarity and patent index evaluation,companies with high technological similarity and strong technological capabilities were selected as the target of cooperation.Then evaluation index system of technological development potential was built from three dimensions:technological competitiveness,technological creativity,and potential for industrialization.AHP-CRITIC method was used to determine the comprehensive development potential of each technology.Finally,technology opportunities based on K-means and text mining were identified.Results and Conclusion This method can help small and medium vaccine companies in China to identify technological opportunities and provide directions for product development.
基金National Natural Science Foundation of China(No.71301038)
文摘In order to construct a resource-saving and environment- friendly society, the advantages of radio frequency identification (RFID) were considered. And it put forward the idea of introducing RFID in the recycling activities of waste products. Taking into account such elements as the technical level of RFID, cost saving from remanufacturing and the cost of RFID tags, both centralized and decentralized supply chain models with different participants in waste product collection were created, in order to determine the optimal pricing strategy and RFID technical level. In the end, sensitivity analyses were conducted to analyze the impacts of scaling parameter for additional increased recovery rate with RFED on pricing and RFID technology level, and impacts of cost saving on the profits of participants in different remanufacturing closed-loop supply chain models.
文摘Five kinds of traditional flower Chinese medicine powders (TFCMD) were identified using tuneable liquid spectral imaging instrument, to discuss the application range and advantages of spectral imaging technology in Chinese medicine identification and analysis field. The testing system is the liquid crystal multispectral imaging system designed by ourselves. All the tests are standard samples supplied by National Institute for Drug Control. The spectral cubes of Campsis grandiflora, Carthamus tinctorius, Albizzia julibrissin, Dendranthema morifolium, and Dendranthema indicum were captured, and then the normalized characteristic spectral curves of them were picked up. The spectral resolution is 5 nm, and the spectral range is 400 nm - 650 nm. The result shows that different TFCMD has different normalized characteristic fluorescence spectral curve. Spectral imaging technology can be used to identify TFCMD, and the testing course is convenient, quick, noninvasive and without pre-treatment.
基金Supported by the China National Science and Technology Major Project(2016zx05006)Sinopec Program for Science and Technology Development(P15156,P15159)。
文摘The meandering channel deposit of the upper member of Neogene Guantao Formation in Shengli Chengdao extra-shallow sea oilfield is characterized by rapid change in sedimentary facies.In addition,affected by surface tides and sea water reverberation,the double sensor seismic data processed by conventional methods has low signal-to-noise ratio and low resolution,and thus cannot meet the needs of seismic description and oil-bearing fluid identification of thin reservoirs less than 10 meters thick in this area.The two-step high resolution frequency bandwidth expanding processing technology was used to improve the signal-to-noise ratio and resolution of the seismic data,as a result,the dominant frequency of the seismic data was enhanced from 30 Hz to 50 Hz,and the sand body thickness resolution was enhanced from 10 m to 6 m.On the basis of fine layer control by seismic data,three types of seismic facies models,floodplain,natural levee and point bar,were defined,and the intelligent horizon-facies controlled recognition technology was worked out,which had a prediction error of reservoir thickness of less than 1.5 m.Clearly,the description accuracy of meandering channel sand bodies has been improved.The probability semi-quantitative oiliness identification method of fluid by prestack multi-parameters has been worked out by integrating Poisson’s ratio,fluid factor,product of Lame parameter and density,and other prestack elastic parameters,and the method has a coincidence rate of fluid identification of more than 90%,providing solid technical support for the exploration and development of thin reservoirs in Shengli Chengdao extra-shallow sea oilfield,which is expected to provide reference for the exploration and development of similar oilfields in China.