The state-space representation of linear time-invariant (LTI) fractional order systems is introduced, and a proof of their stability theory is also given. Then an efficient identification algorithm is proposed for tho...The state-space representation of linear time-invariant (LTI) fractional order systems is introduced, and a proof of their stability theory is also given. Then an efficient identification algorithm is proposed for those fractional order systems. The basic idea of the algorithm is to compute fractional derivatives and the filter simultaneously, i.e., the filtered fractional derivatives can be obtained by computing them in one step, and then system identification can be fulfilled by the least square method. The instrumental variable method is also used in the identification of fractional order systems. In this way, even if there is colored noise in the systems, the unbiased estimation of the parameters can still be obtained. Finally an example of identifying a viscoelastic system is given to show the effectiveness of the aforementioned method.展开更多
The problem of discrete-time model identification of industrial processes with time delay was investigated.An iterative and separable method is proposed to solve this problem,that is,the rational transfer function mod...The problem of discrete-time model identification of industrial processes with time delay was investigated.An iterative and separable method is proposed to solve this problem,that is,the rational transfer function model parameters and time delay are alternately fixed to estimate each other.The instrumental variable technique is applied to guarantee consistent estimation against measurement noise.A noteworthy merit of the proposed method is that it can handle fractional time delay estimation,compared to existing methods commonly assuming that the time delay is an integer multiple of the sampling interval.The identifiability analysis for time delay is addressed and correspondingly,some guidelines are provided for practical implementation of the proposed method.Numerical and experimental examples are presented to illustrate the effectiveness of the proposed method.展开更多
The paper describes a closed-loop system identification procedure for hybrid continuous-time Box–Jenkins models and demonstrates how it can be used for IMC based PID controller tuning. An instrumental variable algori...The paper describes a closed-loop system identification procedure for hybrid continuous-time Box–Jenkins models and demonstrates how it can be used for IMC based PID controller tuning. An instrumental variable algorithm is used to identify hybrid continuous-time transfer function models of the Box–Jenkins form from discretetime prefiltered data, where the process model is a continuous-time transfer function, while the noise is represented as a discrete-time ARMA process. A novel penalized maximum-likelihood approach is used for estimating the discrete-time ARMA process and a circulatory noise elimination identification method is employed to estimate process model. The input–output data of a process are affected by additive circulatory noise in a closedloop. The noise-free input–output data of the process are obtained using the proposed method by removing these circulatory noise components. The process model can be achieved by using instrumental variable estimation method with prefiltered noise-free input–output data. The performance of the proposed hybrid parameter estimation scheme is evaluated by the Monte Carlo simulation analysis. Simulation results illustrate the efficacy of the proposed procedure. The methodology has been successfully applied in tuning of IMC based flow controller and a practical application demonstrates the applicability of the algorithm.展开更多
Due to the large scale and complexity of civil infrastructures, structural health monitoring typically requires a substantial number of sensors, which consequently generate huge volumes of sensor data. Innovative sens...Due to the large scale and complexity of civil infrastructures, structural health monitoring typically requires a substantial number of sensors, which consequently generate huge volumes of sensor data. Innovative sensor data compression techniques are highly desired to facilitate efficient data storage and remote retrieval of sensor data. This paper presents a vibration sensor data compression algorithm based on the Differential Pulse Code Modulation (DPCM) method and the consideration of effects of signal distortion due to lossy data compression on structural system identification. The DPCM system concerned consists of two primary components: linear predictor and quantizer. For the DPCM system considered in this study, the Least Square method is used to derive the linear predictor coefficients and Jayant quantizer is used for scalar quantization. A 5-DOF model structure is used as the prototype structure in numerical study. Numerical simulation was carried out to study the performance of the proposed DPCM-based data compression algorithm as well as its effect on the accuracy of structural identification including modal parameters and second order structural parameters such as stiffness and damping coefficients. It is found that the DPCM-based sensor data compression method is capable of reducing the raw sensor data size to a significant extent while having a minor effect on the modal parameters as well as second order structural parameters identified from reconstructed sensor data.展开更多
通过机器视觉算法精确定位配电柜仪表的位置是实现仪表智能化识别的关键。针对配电柜背景复杂、字符尺度多样和相机像素低而导致的目标定位精度不高问题,提出一种面向配电柜字符识别的YOLOv7-MSBP目标定位算法。首先,设计Micro-branch...通过机器视觉算法精确定位配电柜仪表的位置是实现仪表智能化识别的关键。针对配电柜背景复杂、字符尺度多样和相机像素低而导致的目标定位精度不高问题,提出一种面向配电柜字符识别的YOLOv7-MSBP目标定位算法。首先,设计Micro-branch检测分支,改进初始锚框铺设间隔,从而提高对小目标的检测精度。其次,引入双向特征金字塔网络(BiFPN)跨尺度融合不同层特征值,以改善因下采样造成的细节特征丢失、特征融合不充分的现象;同时,设计同步混合阈卷积注意力模块(Syn-CBAM),加权融合通道和空间注意力特征,以提升算法的特征提取能力;并且,在主干网络引入部分卷积(PConv)模块,以降低算法冗余和延迟,提高检测速度。最后,将YOLOv7-MSBP的定位结果送入Paddle OCR(Optical Character Recognition)模型识别字符。实验结果表明,YOLOv7-MSBP算法的平均精度均值(mAP)达到93.2%,与YOLOv7算法相比提高了4.3个百分点,可见所提算法能够快速准确定位识别配电柜字符,验证了所提算法的有效性。展开更多
目的:基于改进型You Only Look Once V5(YOLOv5)人工智能开发手术器械识别系统。方法:收集常用外科手术器械10类,包括治疗碗、药杯、弯盘、针持器、血管钳、刀柄、组织拉钩、手术刀片、缝针、棉球。将收集的器械置于同一视野下,随机改...目的:基于改进型You Only Look Once V5(YOLOv5)人工智能开发手术器械识别系统。方法:收集常用外科手术器械10类,包括治疗碗、药杯、弯盘、针持器、血管钳、刀柄、组织拉钩、手术刀片、缝针、棉球。将收集的器械置于同一视野下,随机改变不同器械放置位置和状态,在不同拍照方位、布料背景、光线角度和强弱环境下拍摄照片806张。将拍摄的照片按照7∶3随机划分为人工智能训练组和验证组。采用精确度、召回率、平均精度、平均精度均值和F1得分值等参数比较原始YOLOv5模型和改进模型S-YOLOv5的算法识别性能。结果:与原始YOLOv5模型相比,改进模型S-YOLOv5表现出更高的识别性能,其精确率、召回率、平均精度和F1得分值分别为0.978,0.973,0.926,0.975。改进模型S-YOLOv5对各手术器械的识别准确率均高于原始YOLOv5模型。结论:基于S-YOLOv5的人工智能辅助手术器械识别系统具有较好的分类能力和定位能力,为人工智能辅助手术器械清点提供了初步探索和思路。展开更多
In order to reveal the flavor characteristics of Chinese pancakes,the aroma and taste compounds of seven traditional Chinese pancakes were identified.The results showed that electronic nose(E-nose)analysis with PCA co...In order to reveal the flavor characteristics of Chinese pancakes,the aroma and taste compounds of seven traditional Chinese pancakes were identified.The results showed that electronic nose(E-nose)analysis with PCA could successfully distinguish the aroma profiles of seven Chinese pancakes;the principal components PC1 and PC2 represented 75.74%and 23.2%of the total variance(98.94%)respectively.Meanwhile,the discrimination index of taste profiles of seven Chinese pancakes based on electronic tongue(E-tongue)analysis with LDA was 99.32%;the discriminant factors DF1 and DF2 represented 94.99%and 4.33%of the total variance respectively.Furthermore,GC-MS results demonstrated that thirty-threeflavor compounds were identified in seven Chinese pancakes,including aldehydes,alcohols,alkanes,acids,and aromatics.Among the flavor components,aldehydes with ROAVs higher than 1 contributed most significantly to the overall aroma,such as(E,E)-2,4-nonadienal present the largest contribution in Qingzhou pancake,Jinan and Yishui pancake;hexanal present the largest contribution in Shenxian and Gaomi pancake;nonanal and benzeneacetaldehyde present the largest contribution in Linqu and Tai’an pancake,respectively.The umami and sweet taste amino acids were the most abundant in all the Chinese pancake samples,and Qingzhou pancake had relatively high amino acid content.The content of glucose was higher than maltose in Gaomi,Shenxian,and Tai’an pancakes,whereas the content of maltose was higher than glucose in Linqu,Qingzhou,Jinan,and Yishui pancakes.These results indicated that the aroma and taste profiles of Chinese pancakes differed significantly in terms of their flavor compound composition.The presented results could be beneficial for providing a comprehensive method for flavor profile identification of traditional whole-grain-based staples such as Chinese pancakes.展开更多
文摘The state-space representation of linear time-invariant (LTI) fractional order systems is introduced, and a proof of their stability theory is also given. Then an efficient identification algorithm is proposed for those fractional order systems. The basic idea of the algorithm is to compute fractional derivatives and the filter simultaneously, i.e., the filtered fractional derivatives can be obtained by computing them in one step, and then system identification can be fulfilled by the least square method. The instrumental variable method is also used in the identification of fractional order systems. In this way, even if there is colored noise in the systems, the unbiased estimation of the parameters can still be obtained. Finally an example of identifying a viscoelastic system is given to show the effectiveness of the aforementioned method.
文摘The problem of discrete-time model identification of industrial processes with time delay was investigated.An iterative and separable method is proposed to solve this problem,that is,the rational transfer function model parameters and time delay are alternately fixed to estimate each other.The instrumental variable technique is applied to guarantee consistent estimation against measurement noise.A noteworthy merit of the proposed method is that it can handle fractional time delay estimation,compared to existing methods commonly assuming that the time delay is an integer multiple of the sampling interval.The identifiability analysis for time delay is addressed and correspondingly,some guidelines are provided for practical implementation of the proposed method.Numerical and experimental examples are presented to illustrate the effectiveness of the proposed method.
基金Supported by the National Natural Science Foundation of China(61573052,61174128)
文摘The paper describes a closed-loop system identification procedure for hybrid continuous-time Box–Jenkins models and demonstrates how it can be used for IMC based PID controller tuning. An instrumental variable algorithm is used to identify hybrid continuous-time transfer function models of the Box–Jenkins form from discretetime prefiltered data, where the process model is a continuous-time transfer function, while the noise is represented as a discrete-time ARMA process. A novel penalized maximum-likelihood approach is used for estimating the discrete-time ARMA process and a circulatory noise elimination identification method is employed to estimate process model. The input–output data of a process are affected by additive circulatory noise in a closedloop. The noise-free input–output data of the process are obtained using the proposed method by removing these circulatory noise components. The process model can be achieved by using instrumental variable estimation method with prefiltered noise-free input–output data. The performance of the proposed hybrid parameter estimation scheme is evaluated by the Monte Carlo simulation analysis. Simulation results illustrate the efficacy of the proposed procedure. The methodology has been successfully applied in tuning of IMC based flow controller and a practical application demonstrates the applicability of the algorithm.
文摘Due to the large scale and complexity of civil infrastructures, structural health monitoring typically requires a substantial number of sensors, which consequently generate huge volumes of sensor data. Innovative sensor data compression techniques are highly desired to facilitate efficient data storage and remote retrieval of sensor data. This paper presents a vibration sensor data compression algorithm based on the Differential Pulse Code Modulation (DPCM) method and the consideration of effects of signal distortion due to lossy data compression on structural system identification. The DPCM system concerned consists of two primary components: linear predictor and quantizer. For the DPCM system considered in this study, the Least Square method is used to derive the linear predictor coefficients and Jayant quantizer is used for scalar quantization. A 5-DOF model structure is used as the prototype structure in numerical study. Numerical simulation was carried out to study the performance of the proposed DPCM-based data compression algorithm as well as its effect on the accuracy of structural identification including modal parameters and second order structural parameters such as stiffness and damping coefficients. It is found that the DPCM-based sensor data compression method is capable of reducing the raw sensor data size to a significant extent while having a minor effect on the modal parameters as well as second order structural parameters identified from reconstructed sensor data.
文摘通过机器视觉算法精确定位配电柜仪表的位置是实现仪表智能化识别的关键。针对配电柜背景复杂、字符尺度多样和相机像素低而导致的目标定位精度不高问题,提出一种面向配电柜字符识别的YOLOv7-MSBP目标定位算法。首先,设计Micro-branch检测分支,改进初始锚框铺设间隔,从而提高对小目标的检测精度。其次,引入双向特征金字塔网络(BiFPN)跨尺度融合不同层特征值,以改善因下采样造成的细节特征丢失、特征融合不充分的现象;同时,设计同步混合阈卷积注意力模块(Syn-CBAM),加权融合通道和空间注意力特征,以提升算法的特征提取能力;并且,在主干网络引入部分卷积(PConv)模块,以降低算法冗余和延迟,提高检测速度。最后,将YOLOv7-MSBP的定位结果送入Paddle OCR(Optical Character Recognition)模型识别字符。实验结果表明,YOLOv7-MSBP算法的平均精度均值(mAP)达到93.2%,与YOLOv7算法相比提高了4.3个百分点,可见所提算法能够快速准确定位识别配电柜字符,验证了所提算法的有效性。
文摘目的:基于改进型You Only Look Once V5(YOLOv5)人工智能开发手术器械识别系统。方法:收集常用外科手术器械10类,包括治疗碗、药杯、弯盘、针持器、血管钳、刀柄、组织拉钩、手术刀片、缝针、棉球。将收集的器械置于同一视野下,随机改变不同器械放置位置和状态,在不同拍照方位、布料背景、光线角度和强弱环境下拍摄照片806张。将拍摄的照片按照7∶3随机划分为人工智能训练组和验证组。采用精确度、召回率、平均精度、平均精度均值和F1得分值等参数比较原始YOLOv5模型和改进模型S-YOLOv5的算法识别性能。结果:与原始YOLOv5模型相比,改进模型S-YOLOv5表现出更高的识别性能,其精确率、召回率、平均精度和F1得分值分别为0.978,0.973,0.926,0.975。改进模型S-YOLOv5对各手术器械的识别准确率均高于原始YOLOv5模型。结论:基于S-YOLOv5的人工智能辅助手术器械识别系统具有较好的分类能力和定位能力,为人工智能辅助手术器械清点提供了初步探索和思路。
基金supported by the Special Fund of the National Key Research and Development Program of China(Grant No.2017YFD0400103).
文摘In order to reveal the flavor characteristics of Chinese pancakes,the aroma and taste compounds of seven traditional Chinese pancakes were identified.The results showed that electronic nose(E-nose)analysis with PCA could successfully distinguish the aroma profiles of seven Chinese pancakes;the principal components PC1 and PC2 represented 75.74%and 23.2%of the total variance(98.94%)respectively.Meanwhile,the discrimination index of taste profiles of seven Chinese pancakes based on electronic tongue(E-tongue)analysis with LDA was 99.32%;the discriminant factors DF1 and DF2 represented 94.99%and 4.33%of the total variance respectively.Furthermore,GC-MS results demonstrated that thirty-threeflavor compounds were identified in seven Chinese pancakes,including aldehydes,alcohols,alkanes,acids,and aromatics.Among the flavor components,aldehydes with ROAVs higher than 1 contributed most significantly to the overall aroma,such as(E,E)-2,4-nonadienal present the largest contribution in Qingzhou pancake,Jinan and Yishui pancake;hexanal present the largest contribution in Shenxian and Gaomi pancake;nonanal and benzeneacetaldehyde present the largest contribution in Linqu and Tai’an pancake,respectively.The umami and sweet taste amino acids were the most abundant in all the Chinese pancake samples,and Qingzhou pancake had relatively high amino acid content.The content of glucose was higher than maltose in Gaomi,Shenxian,and Tai’an pancakes,whereas the content of maltose was higher than glucose in Linqu,Qingzhou,Jinan,and Yishui pancakes.These results indicated that the aroma and taste profiles of Chinese pancakes differed significantly in terms of their flavor compound composition.The presented results could be beneficial for providing a comprehensive method for flavor profile identification of traditional whole-grain-based staples such as Chinese pancakes.