Purpose:A text generation based multidisciplinary problem identification method is proposed,which does not rely on a large amount of data annotation.Design/methodology/approach:The proposed method first identifies the...Purpose:A text generation based multidisciplinary problem identification method is proposed,which does not rely on a large amount of data annotation.Design/methodology/approach:The proposed method first identifies the research objective types and disciplinary labels of papers using a text classification technique;second,it generates abstractive titles for each paper based on abstract and research objective types using a generative pre-trained language model;third,it extracts problem phrases from generated titles according to regular expression rules;fourth,it creates problem relation networks and identifies the same problems by exploiting a weighted community detection algorithm;finally,it identifies multidisciplinary problems based on the disciplinary labels of papers.Findings:Experiments in the“Carbon Peaking and Carbon Neutrality”field show that the proposed method can effectively identify multidisciplinary research problems.The disciplinary distribution of the identified problems is consistent with our understanding of multidisciplinary collaboration in the field.Research limitations:It is necessary to use the proposed method in other multidisciplinary fields to validate its effectiveness.Practical implications:Multidisciplinary problem identification helps to gather multidisciplinary forces to solve complex real-world problems for the governments,fund valuable multidisciplinary problems for research management authorities,and borrow ideas from other disciplines for researchers.Originality/value:This approach proposes a novel multidisciplinary problem identification method based on text generation,which identifies multidisciplinary problems based on generative abstractive titles of papers without data annotation required by standard sequence labeling techniques.展开更多
In petroleum exploitation, the main aim of resistivity well-logging is to determine the resistivity of the layers by measuring the potential on the electrodes. This mathematical problem can be described as an inverse ...In petroleum exploitation, the main aim of resistivity well-logging is to determine the resistivity of the layers by measuring the potential on the electrodes. This mathematical problem can be described as an inverse problem for the elliptic equivalued surface boundary value problem. In this paper, the author gets the expression of the derivative functions of the potential on the electrodes with respect to the resistivity of the layers. This allows us to solve the identification problem of the resistivity of the layers.展开更多
The problem of determining the pass on heat coefficient of the water-bearing stratum in geothermal reservior exploitation is investigated using the regularised output-least-square formulation. The regularity propertie...The problem of determining the pass on heat coefficient of the water-bearing stratum in geothermal reservior exploitation is investigated using the regularised output-least-square formulation. The regularity properties of the coefficient is obtained.展开更多
The aim of this paper is to find the time-dependent term numerically in a two-dimensional heat equation using initial and Neumann boundary conditions and nonlocal integrals as over-determination conditions.This is a v...The aim of this paper is to find the time-dependent term numerically in a two-dimensional heat equation using initial and Neumann boundary conditions and nonlocal integrals as over-determination conditions.This is a very interesting and challenging nonlinear inverse coefficient problem with important applications in various fields ranging from radioactive decay,melting or cooling processes,electronic chips,acoustics and geophysics to medicine.Unique solvability theo-rems of these inverse problems are supplied.However,since the problems are still ill-posed(a small modification in the input data can lead to bigger impact on the ultimate result in the output solution)the solution needs to be regularized.Therefore,in order to obtain a stable solution,a regularized objective function is minimized in order to retrieve the unknown coefficient.The two-dimensional inverse problem is discretized using the forward time central space(FTCS)finite-difference method(FDM),which is conditionally stable and recast as a non-linear least-squares minimization of the Tikhonov regularization function.Numerically,this is effectively solved using the MATLAB subroutine lsqnonlin.Both exact and noisy data are inverted.Numerical results for a few benchmark test examples are presented,discussed and assessed with respect to the FTCS-FDM mesh size discretisation,the level of noise with which the input data is contaminated,and the choice of the regularization parameter is discussed based on the trial and error technique.展开更多
Source term identification is very important for the contaminant gas emission event. Thus, it is necessary to study the source parameter estimation method with high computation efficiency, high estimation accuracy and...Source term identification is very important for the contaminant gas emission event. Thus, it is necessary to study the source parameter estimation method with high computation efficiency, high estimation accuracy and reasonable confidence interval. Tikhonov regularization method is a potential good tool to identify the source parameters. However, it is invalid for nonlinear inverse problem like gas emission process. 2-step nonlinear and linear PSO (partial swarm optimization)-Tikhonov regularization method proposed previously have estimated the emission source parameters successfully. But there are still some problems in computation efficiency and confidence interval. Hence, a new 1-step nonlinear method combined Tikhonov regularizafion and PSO algorithm with nonlinear forward dispersion model was proposed. First, the method was tested with simulation and experiment cases. The test results showed that 1-step nonlinear hybrid method is able to estimate multiple source parameters with reasonable confidence interval. Then, the estimation performances of different methods were compared with different cases. The estimation values with 1-step nonlinear method were close to that with 2-step nonlinear and linear PSO-Tikhonov regularization method, 1-step nonlinear method even performs better than other two methods in some cases, especially for source strength and downwind distance estimation. Compared with 2-step nonlinear method, 1-step method has higher computation efficiency. On the other hand, the confidence intervals with the method proposed in this paper seem more reasonable than that with other two methods. Finally, single PSO algorithm was compared with 1-step nonlinear PSO-Tikhonov hybrid regularization method. The results showed that the skill scores of 1-step nonlinear hybrid method to estimate source parameters were close to that of single PSO method and even better in some cases. One more important property of 1-step nonlinear PSO-Tikhonov regularization method is its reasonable confidence interval, which is not obtained by single PSO algorithm. Therefore, 1-step nonlinear hybrid regularization method proposed in this paper is a potential good method to estimate contaminant gas emission source term.展开更多
This paper contributes to the structural reliability problem by presenting a novel approach that enables for identification of stochastic oscillatory processes as a critical input for given mechanical models. Identifi...This paper contributes to the structural reliability problem by presenting a novel approach that enables for identification of stochastic oscillatory processes as a critical input for given mechanical models. Identification development follows a transparent image processing paradigm completely independent of state-of-the-art structural dynamics, aiming at delivering a simple and wide purpose method. Validation of the proposed importance sampling strategy is based on multi-scale clusters of realizations of digitally generated non-stationary stochastic processes. Good agreement with the reference pure Monte Carlo results indicates a significant potential in reducing the computational task of first passage probabilities estimation, an important feature in the field of e.g., probabilistic seismic design or risk assessment generally.展开更多
We investigate the identification problems of a class of linear stochastic time-delay systems with unknown delayed states in this study. A time-delay system is expressed as a delay differential equation with a single ...We investigate the identification problems of a class of linear stochastic time-delay systems with unknown delayed states in this study. A time-delay system is expressed as a delay differential equation with a single delay in the state vector. We first derive an equivalent linear time-invariant(LTI) system for the time-delay system using a state augmentation technique. Then a conventional subspace identification method is used to estimate augmented system matrices and Kalman state sequences up to a similarity transformation. To obtain a state-space model for the time-delay system, an alternate convex search(ACS) algorithm is presented to find a similarity transformation that takes the identified augmented system back to a form so that the time-delay system can be recovered. Finally, we reconstruct the Kalman state sequences based on the similarity transformation. The time-delay system matrices under the same state-space basis can be recovered from the Kalman state sequences and input-output data by solving two least squares problems. Numerical examples are to show the effectiveness of the proposed method.展开更多
This paper presents a ranked differential evolution(RDE) algorithm for solving the identification problem of nonlinear discrete-time systems based on a Volterra filter model. In the improved method, a scale factor, ge...This paper presents a ranked differential evolution(RDE) algorithm for solving the identification problem of nonlinear discrete-time systems based on a Volterra filter model. In the improved method, a scale factor, generated by combining a sine function and randomness, effectively keeps a balance between the global search and the local search. Also, the mutation operation is modified after ranking all candidate solutions of the population to help avoid the occurrence of premature convergence. Finally, two examples including a highly nonlinear discrete-time rational system and a real heat exchanger are used to evaluate the performance of the RDE algorithm and five other approaches. Numerical experiments and comparisons demonstrate that the RDE algorithm performs better than the other approaches in most cases.展开更多
基金supported by the General Projects of ISTIC Innovation Foundation“Problem innovation solution mining based on text generation model”(MS2024-03).
文摘Purpose:A text generation based multidisciplinary problem identification method is proposed,which does not rely on a large amount of data annotation.Design/methodology/approach:The proposed method first identifies the research objective types and disciplinary labels of papers using a text classification technique;second,it generates abstractive titles for each paper based on abstract and research objective types using a generative pre-trained language model;third,it extracts problem phrases from generated titles according to regular expression rules;fourth,it creates problem relation networks and identifies the same problems by exploiting a weighted community detection algorithm;finally,it identifies multidisciplinary problems based on the disciplinary labels of papers.Findings:Experiments in the“Carbon Peaking and Carbon Neutrality”field show that the proposed method can effectively identify multidisciplinary research problems.The disciplinary distribution of the identified problems is consistent with our understanding of multidisciplinary collaboration in the field.Research limitations:It is necessary to use the proposed method in other multidisciplinary fields to validate its effectiveness.Practical implications:Multidisciplinary problem identification helps to gather multidisciplinary forces to solve complex real-world problems for the governments,fund valuable multidisciplinary problems for research management authorities,and borrow ideas from other disciplines for researchers.Originality/value:This approach proposes a novel multidisciplinary problem identification method based on text generation,which identifies multidisciplinary problems based on generative abstractive titles of papers without data annotation required by standard sequence labeling techniques.
文摘In petroleum exploitation, the main aim of resistivity well-logging is to determine the resistivity of the layers by measuring the potential on the electrodes. This mathematical problem can be described as an inverse problem for the elliptic equivalued surface boundary value problem. In this paper, the author gets the expression of the derivative functions of the potential on the electrodes with respect to the resistivity of the layers. This allows us to solve the identification problem of the resistivity of the layers.
文摘The problem of determining the pass on heat coefficient of the water-bearing stratum in geothermal reservior exploitation is investigated using the regularised output-least-square formulation. The regularity properties of the coefficient is obtained.
文摘The aim of this paper is to find the time-dependent term numerically in a two-dimensional heat equation using initial and Neumann boundary conditions and nonlocal integrals as over-determination conditions.This is a very interesting and challenging nonlinear inverse coefficient problem with important applications in various fields ranging from radioactive decay,melting or cooling processes,electronic chips,acoustics and geophysics to medicine.Unique solvability theo-rems of these inverse problems are supplied.However,since the problems are still ill-posed(a small modification in the input data can lead to bigger impact on the ultimate result in the output solution)the solution needs to be regularized.Therefore,in order to obtain a stable solution,a regularized objective function is minimized in order to retrieve the unknown coefficient.The two-dimensional inverse problem is discretized using the forward time central space(FTCS)finite-difference method(FDM),which is conditionally stable and recast as a non-linear least-squares minimization of the Tikhonov regularization function.Numerically,this is effectively solved using the MATLAB subroutine lsqnonlin.Both exact and noisy data are inverted.Numerical results for a few benchmark test examples are presented,discussed and assessed with respect to the FTCS-FDM mesh size discretisation,the level of noise with which the input data is contaminated,and the choice of the regularization parameter is discussed based on the trial and error technique.
基金Supported by the National Natural Science Foundation of China(21676216)China Postdoctoral Science Foundation(2015M582667)+2 种基金Natural Science Basic Research Plan in Shaanxi Province of China(2016JQ5079)Key Research Project of Shaanxi Province(2015ZDXM-GY-115)the Fundamental Research Funds for the Central Universities(xjj2017124)
文摘Source term identification is very important for the contaminant gas emission event. Thus, it is necessary to study the source parameter estimation method with high computation efficiency, high estimation accuracy and reasonable confidence interval. Tikhonov regularization method is a potential good tool to identify the source parameters. However, it is invalid for nonlinear inverse problem like gas emission process. 2-step nonlinear and linear PSO (partial swarm optimization)-Tikhonov regularization method proposed previously have estimated the emission source parameters successfully. But there are still some problems in computation efficiency and confidence interval. Hence, a new 1-step nonlinear method combined Tikhonov regularizafion and PSO algorithm with nonlinear forward dispersion model was proposed. First, the method was tested with simulation and experiment cases. The test results showed that 1-step nonlinear hybrid method is able to estimate multiple source parameters with reasonable confidence interval. Then, the estimation performances of different methods were compared with different cases. The estimation values with 1-step nonlinear method were close to that with 2-step nonlinear and linear PSO-Tikhonov regularization method, 1-step nonlinear method even performs better than other two methods in some cases, especially for source strength and downwind distance estimation. Compared with 2-step nonlinear method, 1-step method has higher computation efficiency. On the other hand, the confidence intervals with the method proposed in this paper seem more reasonable than that with other two methods. Finally, single PSO algorithm was compared with 1-step nonlinear PSO-Tikhonov hybrid regularization method. The results showed that the skill scores of 1-step nonlinear hybrid method to estimate source parameters were close to that of single PSO method and even better in some cases. One more important property of 1-step nonlinear PSO-Tikhonov regularization method is its reasonable confidence interval, which is not obtained by single PSO algorithm. Therefore, 1-step nonlinear hybrid regularization method proposed in this paper is a potential good method to estimate contaminant gas emission source term.
文摘This paper contributes to the structural reliability problem by presenting a novel approach that enables for identification of stochastic oscillatory processes as a critical input for given mechanical models. Identification development follows a transparent image processing paradigm completely independent of state-of-the-art structural dynamics, aiming at delivering a simple and wide purpose method. Validation of the proposed importance sampling strategy is based on multi-scale clusters of realizations of digitally generated non-stationary stochastic processes. Good agreement with the reference pure Monte Carlo results indicates a significant potential in reducing the computational task of first passage probabilities estimation, an important feature in the field of e.g., probabilistic seismic design or risk assessment generally.
文摘We investigate the identification problems of a class of linear stochastic time-delay systems with unknown delayed states in this study. A time-delay system is expressed as a delay differential equation with a single delay in the state vector. We first derive an equivalent linear time-invariant(LTI) system for the time-delay system using a state augmentation technique. Then a conventional subspace identification method is used to estimate augmented system matrices and Kalman state sequences up to a similarity transformation. To obtain a state-space model for the time-delay system, an alternate convex search(ACS) algorithm is presented to find a similarity transformation that takes the identified augmented system back to a form so that the time-delay system can be recovered. Finally, we reconstruct the Kalman state sequences based on the similarity transformation. The time-delay system matrices under the same state-space basis can be recovered from the Kalman state sequences and input-output data by solving two least squares problems. Numerical examples are to show the effectiveness of the proposed method.
基金supported by the Science Fundamental Research Project of Jiangsu Normal University,China(No.9212812101)
文摘This paper presents a ranked differential evolution(RDE) algorithm for solving the identification problem of nonlinear discrete-time systems based on a Volterra filter model. In the improved method, a scale factor, generated by combining a sine function and randomness, effectively keeps a balance between the global search and the local search. Also, the mutation operation is modified after ranking all candidate solutions of the population to help avoid the occurrence of premature convergence. Finally, two examples including a highly nonlinear discrete-time rational system and a real heat exchanger are used to evaluate the performance of the RDE algorithm and five other approaches. Numerical experiments and comparisons demonstrate that the RDE algorithm performs better than the other approaches in most cases.