Centralized storage and identity identification methods pose many risks,including hacker attacks,data misuse,and single points of failure.Additionally,existing centralized identity management methods face interoperabi...Centralized storage and identity identification methods pose many risks,including hacker attacks,data misuse,and single points of failure.Additionally,existing centralized identity management methods face interoperability issues and rely on a single identity provider,leaving users without control over their identities.Therefore,this paper proposes a mechanism for identity identification and data sharing based on decentralized identifiers.The scheme utilizes blockchain technology to store the identifiers and data hashed on the chain to ensure permanent identity recognition and data integrity.Data is stored on InterPlanetary File System(IPFS)to avoid the risk of single points of failure and to enhance data persistence and availability.At the same time,compliance with World Wide Web Consortium(W3C)standards for decentralized identifiers and verifiable credentials increases the mechanism’s scalability and interoperability.展开更多
The Internet of Things(IoT)provides new opportunities for different IoT platforms connecting various devices together.The need to identify those devices is the foremost important to perform any kind of operation.Many ...The Internet of Things(IoT)provides new opportunities for different IoT platforms connecting various devices together.The need to identify those devices is the foremost important to perform any kind of operation.Many organizations and standard bodies that provide specifications and frameworks for the IoT currently have their own identification mechanisms.Some existing industrial identification mechanisms can also be used in the IoT.There is no common Identification Scheme(IS)for the IoT as yet,because of the political and commercial differences amongst the standard bodies.The unavailability of a unified IS method makes the inter-working among IoT platforms challenging.This paper analyses and compares ISs used by several selected IoT platforms.This work will help in understanding the need for a common identification mechanism to provide inter-working among different IoT platforms.展开更多
The applications of unique identifiers such as name, home address and social security number to link different datasets have been commonly used and well-published. Also, the theoretical concepts of probabilistic algor...The applications of unique identifiers such as name, home address and social security number to link different datasets have been commonly used and well-published. Also, the theoretical concepts of probabilistic algorithm in record linkage have been well-defined in the literature. However, few studies have reported the applications of its probabilistic algorithm using non-unique identifiers. In this paper, we investigate several variables (weight, height, waist, age, sex, smoking and alcohol habit) as non-unique identifiers using Japanese cohort dataset with three-year baseline of 1989-1991 to observe how effectively these identifiers can be used and what influence those may have on record linkage. Moreover, we modify the conditions of these identifiers and estimate the sensitivity, specificity and accuracy for comparison. We further investigate this by using extended ten-year baseline of 1989-1999 as well. As a result, we conclude that the combination of age, sex, weight and height predicts better estimation with regards to the sensitivity, specificity and accuracy than other combinations in both men and women in case of using three-year baseline, whereas the combination of age, sex and height predicts better in both men and women in case of using ten-year baseline.展开更多
Cytoscape is one of the most popular platforms for biomolecular networks research. However Cytoscape cannot display biomolecular names according to their accession identifiers in different databases. A plugin named Ai...Cytoscape is one of the most popular platforms for biomolecular networks research. However Cytoscape cannot display biomolecular names according to their accession identifiers in different databases. A plugin named Ai2NU is designed and implemented in this paper. It can make biomolecular names displayed automatically in biomolecular networks graphs in Cytoscape by constructing a local dictionary. It is convenient for researchers to recognize biomolecules and enhance the research efficiency.展开更多
Inland waters support the growth of several sectors including mining, agriculture, and health. This makes it crucial to have sustainable quantity and quality through conservation practices. Achieving sustainability re...Inland waters support the growth of several sectors including mining, agriculture, and health. This makes it crucial to have sustainable quantity and quality through conservation practices. Achieving sustainability requires information on the spatial distribution of water bodies. This requirement is particularly critical in low-income nations where dependence on natural resources is a key driver to economic growth. Unfortunately, these nations lack the resources to promote costly waterbody characterization. This study pre-sents a cost-effective approach in assigning Unique Identifiers (UIDs) that define locations and characteristics of rivers and streams. Our objective is to develop a scheme that can be used to identify and characterize rivers and streams in a nation. We utilized an open-source Digital Elevation Model (DEM) of NASA’s ASTER satellite and the hydrology tool in ArcGIS 10.7.1. The DEM was imported to ArcGIS followed by delineation of hydrologic regions, subregions, and stream orders. Each stream segment was given a UID based on its region and Strahler’s stream order system. We present a case study analysis for two regions within Sierra Leone using water quality data of selected rivers and streams. These will lay the foundation for a nationwide coding exercise and provide a useful reference for water resource practitioners.展开更多
The FAIR principles describe characteristics intended to support access to and reuse of digital artifacts in the scientific research ecosystem.Persistent,globally unique identifiers,resolvable on the Web,and associate...The FAIR principles describe characteristics intended to support access to and reuse of digital artifacts in the scientific research ecosystem.Persistent,globally unique identifiers,resolvable on the Web,and associated with a set of additional descriptive metadata,are foundational to FAIR data.Here we describe some basic principles and exemplars for their design,use and orchestration with other system elements to achieve FAIRness for digital research objects.展开更多
Data-intensive science is reality in large scientific organizations such as the Max Planck Society,but due to the inefficiency of our data practices when it comes to integrating data from different sources,many projec...Data-intensive science is reality in large scientific organizations such as the Max Planck Society,but due to the inefficiency of our data practices when it comes to integrating data from different sources,many projects cannot be carried out and many researchers are excluded.Since about 80%of the time in data-intensive projects is wasted according to surveys we need to conclude that we are not fit for the challenges that will come with the billions of smart devices producing continuous streams of data-our methods do not scale.Therefore experts worldwide are looking for strategies and methods that have a potential for the future.The first steps have been made since there is now a wide agreement from the Research Data Alliance to the FAIR principles that data should be associated with persistent identifiers(PID)and metadata(MD).In fact after 20 years of experience we can claim that there are trustworthy PID systems already in broad use.It is argued,however,that assigning PIDs is just the first step.If we agree to assign PIDs and also use the PID to store important relationships such as pointing to locations where the bit sequences or different metadata can be accessed,we are close to defining Digital Objects(DOs)which could indeed indicate a solution to solve some of the basic problems in data management and processing.In addition to standardizing the way we assign PIDs,metadata and other state information we could also define a Digital Object Access Protocol as a universal exchange protocol for DOs stored in repositories using different data models and data organizations.We could also associate a type with each DO and a set of operations allowed working on its content which would facilitate the way to automatic processing which has been identified as the major step for scalability in data science and data industry.A globally connected group of experts is now working on establishing testbeds for a DO-based data infrastructure.展开更多
Accurate and continuous identification of individual cattle is crucial to precision farming in recent years.It is also the prerequisite to monitor the individual feed intake and feeding time of beef cattle at medium t...Accurate and continuous identification of individual cattle is crucial to precision farming in recent years.It is also the prerequisite to monitor the individual feed intake and feeding time of beef cattle at medium to long distances over different cameras.However,beef cattle can tend to frequently move and change their feeding position during feeding.Furthermore,the great variations in their head direction and complex environments(light,occlusion,and background)can also lead to some difficulties in the recognition,particularly for the bio-similarities among individual cattle.Among them,AlignedReID++model is characterized by both global and local information for image matching.In particular,the dynamically matching local information(DMLI)algorithm has been introduced into the local branch to automatically align the horizontal local information.In this research,the AlignedReID++model was utilized and improved to achieve the better performance in cattle re-identification(ReID).Initially,triplet attention(TA)modules were integrated into the BottleNecks of ResNet50 Backbone.The feature extraction was then enhanced through cross-dimensional interactions with the minimal computational overhead.Since the TA modules in AlignedReID++baseline model increased the model size and floating point operations(FLOPs)by 0.005 M and 0.05 G,the rank-1 accuracy and mean average precision(mAP)were improved by 1.0 percentage points and 2.94 percentage points,respectively.Specifically,the rank-1 accuracies were outperformed by 0.86 percentage points and 0.12 percentage points,respectively,compared with the convolution block attention module(CBAM)and efficient channel attention(ECA)modules,although 0.94 percentage points were lower than that of squeeze-and-excitation(SE)modules.The mAP metric values were exceeded by 0.22,0.86 and 0.12 percentage points,respectively,compared with the SE,CBAM,and ECA modules.Additionally,the Cross-Entropy Loss function was replaced with the CosFace Loss function in the global branch of baseline model.CosFace Loss and Hard Triplet Loss were jointly employed to train the baseline model for the better identification on the similar individuals.AlignedReID++with CosFace Loss was outperformed the baseline model by 0.24 and 0.92 percentage points in the rank-1 accuracy and mAP,respectively,whereas,AlignedReID++with ArcFace Loss was exceeded by 0.36 and 0.56 percentage points,respectively.The improved model with the TA modules and CosFace Loss was achieved in a rank-1 accuracy of 94.42%,rank-5 accuracy of 98.78%,rank-10 accuracy of 99.34%,mAP of 63.90%,FLOPs of 5.45 G,frames per second(FPS)of 5.64,and model size of 23.78 M.The rank-1 accuracies were exceeded by 1.84,4.72,0.76 and 5.36 percentage points,respectively,compared with the baseline model,part-based convolutional baseline(PCB),multiple granularity network(MGN),and relation-aware global attention(RGA),while the mAP metrics were surpassed 6.42,5.86,4.30 and 7.38 percentage points,respectively.Meanwhile,the rank-1 accuracy was 0.98 percentage points lower than TransReID,but the mAP metric was exceeded by 3.90 percentage points.Moreover,the FLOPs of improved model were only 0.05 G larger than that of baseline model,while smaller than those of PCB,MGN,RGA,and TransReID by 0.68,6.51,25.4,and 16.55 G,respectively.The model size of improved model was 23.78 M,which was smaller than those of the baseline model,PCB,MGN,RGA,and TransReID by 0.03,2.33,45.06,14.53 and 62.85 M,respectively.The inference speed of improved model on a CPU was lower than those of PCB,MGN,and baseline model,but higher than TransReID and RGA.The t-SNE feature embedding visualization demonstrated that the global and local features were achieve in the better intra-class compactness and inter-class variability.Therefore,the improved model can be expected to effectively re-identify the beef cattle in natural environments of breeding farm,in order to monitor the individual feed intake and feeding time.展开更多
Studying on the genetic diversity and genetic relationship of flowering cherry cultivars is extremely important for germplasm conservation, cultivar identification and breeding. Flowering cherry is widely cultivated a...Studying on the genetic diversity and genetic relationship of flowering cherry cultivars is extremely important for germplasm conservation, cultivar identification and breeding. Flowering cherry is widely cultivated as an important woody ornamental plant in worldwide, especially Japan, China. However, owning to the morphological similarity, many cultivars are distinguished hardly in non-flowering season. Here, we evaluated the genetic diversity and genetic relationship of 40 flowering cherry cultivars, which are mainly cultivated in China. We selected 13 polymorphicprimers to amplify to allele fragments with fluorescent-labeled capillary electrophoresis technology. The population structure analysis results show that these cultivars could be divided into 4 subpopulations. At the population level, N<sub>a</sub> and N<sub>e</sub> were 6.062, 4.326, respectively. H<sub>o</sub> and H<sub>e</sub> were 0.458 and 0.670, respectively. The Shannon’s information index (I) was 1.417. The Pop3, which originated from P. serrulata, had the highest H<sub>o</sub>, H<sub>e</sub>, and I among the 4 subpopulations. AMOVA showed that only 4% of genetic variation came from populations, the 39% variation came from individuals and 57% (p < 0.05) came from intra-individuals. 5 polymorphic SSR primers were selected to construct molecular ID code system of these cultivars. This analysis on the genetic diversity and relationship of the 40 flowering cherry cultivars will help to insight into the genetic background, relationship of these flowering cherry cultivars and promote to identify similar cultivars.展开更多
Online tracking mechanisms employed by internet companies for user profiling and targeted advertising raise major privacy concerns. Despite efforts to defend against these mechanisms, they continue to evolve, renderin...Online tracking mechanisms employed by internet companies for user profiling and targeted advertising raise major privacy concerns. Despite efforts to defend against these mechanisms, they continue to evolve, rendering many existing defences ineffective. This study performs a large-scale measurement of online tracking mechanisms across a large pool of websites using the OpenWPM (Open Web Privacy Measurement) platform. It systematically evaluates the effectiveness of several ad blockers and underlying Privacy Enhancing Technologies (PET) that are primarily used to mitigate different tracking techniques. By quantifying the strengths and limitations of these tools against modern tracking methods, the findings highlight gaps in existing privacy protections. Actionable recommendations are provided to enhance user privacy defences, guide tool developers and inform policymakers on addressing invasive online tracking practices.展开更多
Nowadays,wood identification is made by experts using hand lenses,wood atlases,and field manuals which take a lot of cost and time for the training process.The quantity and species must be strictly set up,and accurate...Nowadays,wood identification is made by experts using hand lenses,wood atlases,and field manuals which take a lot of cost and time for the training process.The quantity and species must be strictly set up,and accurate identification of the wood species must be made during exploitation to monitor trade and enforce regulations to stop illegal logging.With the development of science,wood identification should be supported with technology to enhance the perception of fairness of trade.An automatic wood identification system and a dataset of 50 commercial wood species from Asia are established,namely,wood anatomical images collected and used to train for the proposed model.In the convolutional neural network(CNN),the last layers are usually soft-max functions with dense layers.These layers contain the most parameters that affect the speed model.To reduce the number of parameters in the last layers of the CNN model and enhance the accuracy,the structure of the model should be optimized and developed.Therefore,a hybrid of convolutional neural network and random forest model(CNN-RF model)is introduced to wood identification.The accuracy’s hybrid model is more than 98%,and the processing speed is 3 times higher than the CNN model.The highest accuracy is 1.00 in some species,and the lowest is 0.92.These results show the excellent adaptability of the hybrid model in wood identification based on anatomical images.It also facilitates further investigations of wood cells and has implications for wood science.展开更多
We propose a new automatic method for the interpretation of potential fi eld data, called the RDAS–Euler method, which is based on Euler's deconvolution and analytic signal methods. The proposed method can estimate ...We propose a new automatic method for the interpretation of potential fi eld data, called the RDAS–Euler method, which is based on Euler's deconvolution and analytic signal methods. The proposed method can estimate the horizontal and vertical extent of geophysical anomalies without prior information of the nature of the anomalies(structural index). It also avoids inversion errors because of the erroneous choice of the structural index N in the conventional Euler deconvolution method. The method was tested using model gravity anomalies. In all cases, the misfi t between theoretical values and inversion results is less than 10%. Relative to the conventional Euler deconvolution method, the RDAS–Euler method produces inversion results that are more stable and accurate. Finally, we demonstrate the practicability of the method by applying it to Hulin Basin in Heilongjiang province, where the proposed method produced more accurate data regarding the distribution of faults.展开更多
The structure of bupirimate was identified by using MS and NMR.The structures of 10 impurities were identified by using GC-MS.The method provides a powerful tool for structure analysis special in complex samples.
With the data of daily precipitation and daily evaporation,dynamic drought index was calculated and compared with the identification standard of drought grade to qualify the severity of drought.According to the dynami...With the data of daily precipitation and daily evaporation,dynamic drought index was calculated and compared with the identification standard of drought grade to qualify the severity of drought.According to the dynamic drought index,a regional drought identifying system was developed for the watershed between the reach of the Yangtze River and Huaihe River in Anhui Province by using VC++ working platform and Access database.This drought identifying system would be very useful to forecast and early warn the happening of drought in this area.展开更多
文摘Centralized storage and identity identification methods pose many risks,including hacker attacks,data misuse,and single points of failure.Additionally,existing centralized identity management methods face interoperability issues and rely on a single identity provider,leaving users without control over their identities.Therefore,this paper proposes a mechanism for identity identification and data sharing based on decentralized identifiers.The scheme utilizes blockchain technology to store the identifiers and data hashed on the chain to ensure permanent identity recognition and data integrity.Data is stored on InterPlanetary File System(IPFS)to avoid the risk of single points of failure and to enhance data persistence and availability.At the same time,compliance with World Wide Web Consortium(W3C)standards for decentralized identifiers and verifiable credentials increases the mechanism’s scalability and interoperability.
基金This work is supported by the Institute for Information&communications Technology Promotion(IITP)grant funded by the Korean government Ministry of Science and ICT(MSIT)(No.B0184-15-1001,Federated Interoperable Semantic IoT Testbeds and Applications).
文摘The Internet of Things(IoT)provides new opportunities for different IoT platforms connecting various devices together.The need to identify those devices is the foremost important to perform any kind of operation.Many organizations and standard bodies that provide specifications and frameworks for the IoT currently have their own identification mechanisms.Some existing industrial identification mechanisms can also be used in the IoT.There is no common Identification Scheme(IS)for the IoT as yet,because of the political and commercial differences amongst the standard bodies.The unavailability of a unified IS method makes the inter-working among IoT platforms challenging.This paper analyses and compares ISs used by several selected IoT platforms.This work will help in understanding the need for a common identification mechanism to provide inter-working among different IoT platforms.
文摘The applications of unique identifiers such as name, home address and social security number to link different datasets have been commonly used and well-published. Also, the theoretical concepts of probabilistic algorithm in record linkage have been well-defined in the literature. However, few studies have reported the applications of its probabilistic algorithm using non-unique identifiers. In this paper, we investigate several variables (weight, height, waist, age, sex, smoking and alcohol habit) as non-unique identifiers using Japanese cohort dataset with three-year baseline of 1989-1991 to observe how effectively these identifiers can be used and what influence those may have on record linkage. Moreover, we modify the conditions of these identifiers and estimate the sensitivity, specificity and accuracy for comparison. We further investigate this by using extended ten-year baseline of 1989-1999 as well. As a result, we conclude that the combination of age, sex, weight and height predicts better estimation with regards to the sensitivity, specificity and accuracy than other combinations in both men and women in case of using three-year baseline, whereas the combination of age, sex and height predicts better in both men and women in case of using ten-year baseline.
基金Project supported by the Shanghai Leading Academic Discipline Project(Grnat No.J50103)the Ph D Programs Foundation of Ministry of Education of China(Grant No.20080280007)+1 种基金the Innovation Program of Municipal Education Commission of Shanghai Municipality(Grant No.11Y203)the Innovation Foundation of Shanghai University
文摘Cytoscape is one of the most popular platforms for biomolecular networks research. However Cytoscape cannot display biomolecular names according to their accession identifiers in different databases. A plugin named Ai2NU is designed and implemented in this paper. It can make biomolecular names displayed automatically in biomolecular networks graphs in Cytoscape by constructing a local dictionary. It is convenient for researchers to recognize biomolecules and enhance the research efficiency.
文摘Inland waters support the growth of several sectors including mining, agriculture, and health. This makes it crucial to have sustainable quantity and quality through conservation practices. Achieving sustainability requires information on the spatial distribution of water bodies. This requirement is particularly critical in low-income nations where dependence on natural resources is a key driver to economic growth. Unfortunately, these nations lack the resources to promote costly waterbody characterization. This study pre-sents a cost-effective approach in assigning Unique Identifiers (UIDs) that define locations and characteristics of rivers and streams. Our objective is to develop a scheme that can be used to identify and characterize rivers and streams in a nation. We utilized an open-source Digital Elevation Model (DEM) of NASA’s ASTER satellite and the hydrology tool in ArcGIS 10.7.1. The DEM was imported to ArcGIS followed by delineation of hydrologic regions, subregions, and stream orders. Each stream segment was given a UID based on its region and Strahler’s stream order system. We present a case study analysis for two regions within Sierra Leone using water quality data of selected rivers and streams. These will lay the foundation for a nationwide coding exercise and provide a useful reference for water resource practitioners.
基金This work was supported in part by the European Union’s Horizon 2020 program under grant agreements 777523,FREYA“Connected Open Identifiers for Discovery,Access and Use of Research Resources”,654248,CORBEL+1 种基金“Coordinated Research Infrastructures Building Enduring Life-science services”,and 823830Bioexcel2,"BioExcel-2 Centre of Excellence for Computational Biomolecular Research".Many thanks to Paul Groth for his helpful comments on the manuscript.
文摘The FAIR principles describe characteristics intended to support access to and reuse of digital artifacts in the scientific research ecosystem.Persistent,globally unique identifiers,resolvable on the Web,and associated with a set of additional descriptive metadata,are foundational to FAIR data.Here we describe some basic principles and exemplars for their design,use and orchestration with other system elements to achieve FAIRness for digital research objects.
文摘Data-intensive science is reality in large scientific organizations such as the Max Planck Society,but due to the inefficiency of our data practices when it comes to integrating data from different sources,many projects cannot be carried out and many researchers are excluded.Since about 80%of the time in data-intensive projects is wasted according to surveys we need to conclude that we are not fit for the challenges that will come with the billions of smart devices producing continuous streams of data-our methods do not scale.Therefore experts worldwide are looking for strategies and methods that have a potential for the future.The first steps have been made since there is now a wide agreement from the Research Data Alliance to the FAIR principles that data should be associated with persistent identifiers(PID)and metadata(MD).In fact after 20 years of experience we can claim that there are trustworthy PID systems already in broad use.It is argued,however,that assigning PIDs is just the first step.If we agree to assign PIDs and also use the PID to store important relationships such as pointing to locations where the bit sequences or different metadata can be accessed,we are close to defining Digital Objects(DOs)which could indeed indicate a solution to solve some of the basic problems in data management and processing.In addition to standardizing the way we assign PIDs,metadata and other state information we could also define a Digital Object Access Protocol as a universal exchange protocol for DOs stored in repositories using different data models and data organizations.We could also associate a type with each DO and a set of operations allowed working on its content which would facilitate the way to automatic processing which has been identified as the major step for scalability in data science and data industry.A globally connected group of experts is now working on establishing testbeds for a DO-based data infrastructure.
基金National Key Research and Development Program(2023YFD1301801)National Natural Science Foundation of China(32272931)+1 种基金Shaanxi Province Agricultural Key Core Technology Project(2024NYGG005)Shaanxi Province Key R&D Program(2024NC-ZDCYL-05-12)。
文摘Accurate and continuous identification of individual cattle is crucial to precision farming in recent years.It is also the prerequisite to monitor the individual feed intake and feeding time of beef cattle at medium to long distances over different cameras.However,beef cattle can tend to frequently move and change their feeding position during feeding.Furthermore,the great variations in their head direction and complex environments(light,occlusion,and background)can also lead to some difficulties in the recognition,particularly for the bio-similarities among individual cattle.Among them,AlignedReID++model is characterized by both global and local information for image matching.In particular,the dynamically matching local information(DMLI)algorithm has been introduced into the local branch to automatically align the horizontal local information.In this research,the AlignedReID++model was utilized and improved to achieve the better performance in cattle re-identification(ReID).Initially,triplet attention(TA)modules were integrated into the BottleNecks of ResNet50 Backbone.The feature extraction was then enhanced through cross-dimensional interactions with the minimal computational overhead.Since the TA modules in AlignedReID++baseline model increased the model size and floating point operations(FLOPs)by 0.005 M and 0.05 G,the rank-1 accuracy and mean average precision(mAP)were improved by 1.0 percentage points and 2.94 percentage points,respectively.Specifically,the rank-1 accuracies were outperformed by 0.86 percentage points and 0.12 percentage points,respectively,compared with the convolution block attention module(CBAM)and efficient channel attention(ECA)modules,although 0.94 percentage points were lower than that of squeeze-and-excitation(SE)modules.The mAP metric values were exceeded by 0.22,0.86 and 0.12 percentage points,respectively,compared with the SE,CBAM,and ECA modules.Additionally,the Cross-Entropy Loss function was replaced with the CosFace Loss function in the global branch of baseline model.CosFace Loss and Hard Triplet Loss were jointly employed to train the baseline model for the better identification on the similar individuals.AlignedReID++with CosFace Loss was outperformed the baseline model by 0.24 and 0.92 percentage points in the rank-1 accuracy and mAP,respectively,whereas,AlignedReID++with ArcFace Loss was exceeded by 0.36 and 0.56 percentage points,respectively.The improved model with the TA modules and CosFace Loss was achieved in a rank-1 accuracy of 94.42%,rank-5 accuracy of 98.78%,rank-10 accuracy of 99.34%,mAP of 63.90%,FLOPs of 5.45 G,frames per second(FPS)of 5.64,and model size of 23.78 M.The rank-1 accuracies were exceeded by 1.84,4.72,0.76 and 5.36 percentage points,respectively,compared with the baseline model,part-based convolutional baseline(PCB),multiple granularity network(MGN),and relation-aware global attention(RGA),while the mAP metrics were surpassed 6.42,5.86,4.30 and 7.38 percentage points,respectively.Meanwhile,the rank-1 accuracy was 0.98 percentage points lower than TransReID,but the mAP metric was exceeded by 3.90 percentage points.Moreover,the FLOPs of improved model were only 0.05 G larger than that of baseline model,while smaller than those of PCB,MGN,RGA,and TransReID by 0.68,6.51,25.4,and 16.55 G,respectively.The model size of improved model was 23.78 M,which was smaller than those of the baseline model,PCB,MGN,RGA,and TransReID by 0.03,2.33,45.06,14.53 and 62.85 M,respectively.The inference speed of improved model on a CPU was lower than those of PCB,MGN,and baseline model,but higher than TransReID and RGA.The t-SNE feature embedding visualization demonstrated that the global and local features were achieve in the better intra-class compactness and inter-class variability.Therefore,the improved model can be expected to effectively re-identify the beef cattle in natural environments of breeding farm,in order to monitor the individual feed intake and feeding time.
文摘Studying on the genetic diversity and genetic relationship of flowering cherry cultivars is extremely important for germplasm conservation, cultivar identification and breeding. Flowering cherry is widely cultivated as an important woody ornamental plant in worldwide, especially Japan, China. However, owning to the morphological similarity, many cultivars are distinguished hardly in non-flowering season. Here, we evaluated the genetic diversity and genetic relationship of 40 flowering cherry cultivars, which are mainly cultivated in China. We selected 13 polymorphicprimers to amplify to allele fragments with fluorescent-labeled capillary electrophoresis technology. The population structure analysis results show that these cultivars could be divided into 4 subpopulations. At the population level, N<sub>a</sub> and N<sub>e</sub> were 6.062, 4.326, respectively. H<sub>o</sub> and H<sub>e</sub> were 0.458 and 0.670, respectively. The Shannon’s information index (I) was 1.417. The Pop3, which originated from P. serrulata, had the highest H<sub>o</sub>, H<sub>e</sub>, and I among the 4 subpopulations. AMOVA showed that only 4% of genetic variation came from populations, the 39% variation came from individuals and 57% (p < 0.05) came from intra-individuals. 5 polymorphic SSR primers were selected to construct molecular ID code system of these cultivars. This analysis on the genetic diversity and relationship of the 40 flowering cherry cultivars will help to insight into the genetic background, relationship of these flowering cherry cultivars and promote to identify similar cultivars.
文摘Online tracking mechanisms employed by internet companies for user profiling and targeted advertising raise major privacy concerns. Despite efforts to defend against these mechanisms, they continue to evolve, rendering many existing defences ineffective. This study performs a large-scale measurement of online tracking mechanisms across a large pool of websites using the OpenWPM (Open Web Privacy Measurement) platform. It systematically evaluates the effectiveness of several ad blockers and underlying Privacy Enhancing Technologies (PET) that are primarily used to mitigate different tracking techniques. By quantifying the strengths and limitations of these tools against modern tracking methods, the findings highlight gaps in existing privacy protections. Actionable recommendations are provided to enhance user privacy defences, guide tool developers and inform policymakers on addressing invasive online tracking practices.
文摘Nowadays,wood identification is made by experts using hand lenses,wood atlases,and field manuals which take a lot of cost and time for the training process.The quantity and species must be strictly set up,and accurate identification of the wood species must be made during exploitation to monitor trade and enforce regulations to stop illegal logging.With the development of science,wood identification should be supported with technology to enhance the perception of fairness of trade.An automatic wood identification system and a dataset of 50 commercial wood species from Asia are established,namely,wood anatomical images collected and used to train for the proposed model.In the convolutional neural network(CNN),the last layers are usually soft-max functions with dense layers.These layers contain the most parameters that affect the speed model.To reduce the number of parameters in the last layers of the CNN model and enhance the accuracy,the structure of the model should be optimized and developed.Therefore,a hybrid of convolutional neural network and random forest model(CNN-RF model)is introduced to wood identification.The accuracy’s hybrid model is more than 98%,and the processing speed is 3 times higher than the CNN model.The highest accuracy is 1.00 in some species,and the lowest is 0.92.These results show the excellent adaptability of the hybrid model in wood identification based on anatomical images.It also facilitates further investigations of wood cells and has implications for wood science.
基金supported by the National High Technology Research and Development Program of China(No.2006AA06A208)
文摘We propose a new automatic method for the interpretation of potential fi eld data, called the RDAS–Euler method, which is based on Euler's deconvolution and analytic signal methods. The proposed method can estimate the horizontal and vertical extent of geophysical anomalies without prior information of the nature of the anomalies(structural index). It also avoids inversion errors because of the erroneous choice of the structural index N in the conventional Euler deconvolution method. The method was tested using model gravity anomalies. In all cases, the misfi t between theoretical values and inversion results is less than 10%. Relative to the conventional Euler deconvolution method, the RDAS–Euler method produces inversion results that are more stable and accurate. Finally, we demonstrate the practicability of the method by applying it to Hulin Basin in Heilongjiang province, where the proposed method produced more accurate data regarding the distribution of faults.
文摘The structure of bupirimate was identified by using MS and NMR.The structures of 10 impurities were identified by using GC-MS.The method provides a powerful tool for structure analysis special in complex samples.
基金Supported by Special Fund for Public Welfare Meteorology Industry (GYHY201106029)
文摘With the data of daily precipitation and daily evaporation,dynamic drought index was calculated and compared with the identification standard of drought grade to qualify the severity of drought.According to the dynamic drought index,a regional drought identifying system was developed for the watershed between the reach of the Yangtze River and Huaihe River in Anhui Province by using VC++ working platform and Access database.This drought identifying system would be very useful to forecast and early warn the happening of drought in this area.