With the increasing number of vehicles,manual security inspections are becoming more laborious at road checkpoints.To address it,a specialized Road Checkpoints Robot(RCRo)system is proposed,incorporated with enhanced ...With the increasing number of vehicles,manual security inspections are becoming more laborious at road checkpoints.To address it,a specialized Road Checkpoints Robot(RCRo)system is proposed,incorporated with enhanced You Only Look Once(YOLO)and a 6-degree-of-freedom(DOF)manipulator,for autonomous identity verification and vehicle inspection.The modified YOLO is characterized by large objects’sensitivity and faster detection speed,named“LF-YOLO”.The better sensitivity of large objects and the faster detection speed are achieved by means of the Dense module-based backbone network connecting two-scale detecting network,for object detection tasks,along with optimized anchor boxes and improved loss function.During the manipulator motion,Octree-aided motion control scheme is adopted for collision-free motion through Robot Operating System(ROS).The proposed LF-YOLO which utilizes continuous optimization strategy and residual technique provides a promising detector design,which has been found to be more effective during actual object detection,in terms of decreased average detection time by 68.25%and 60.60%,and increased average Intersection over Union(Io U)by 20.74%and6.79%compared to YOLOv3 and YOLOv4 through experiments.The comprehensive functional tests of RCRo system demonstrate the feasibility and competency of the multiple unmanned inspections in practice.展开更多
基金supported by the National Key Research and Development Program of China(grant number:2017YFC0806503)。
文摘With the increasing number of vehicles,manual security inspections are becoming more laborious at road checkpoints.To address it,a specialized Road Checkpoints Robot(RCRo)system is proposed,incorporated with enhanced You Only Look Once(YOLO)and a 6-degree-of-freedom(DOF)manipulator,for autonomous identity verification and vehicle inspection.The modified YOLO is characterized by large objects’sensitivity and faster detection speed,named“LF-YOLO”.The better sensitivity of large objects and the faster detection speed are achieved by means of the Dense module-based backbone network connecting two-scale detecting network,for object detection tasks,along with optimized anchor boxes and improved loss function.During the manipulator motion,Octree-aided motion control scheme is adopted for collision-free motion through Robot Operating System(ROS).The proposed LF-YOLO which utilizes continuous optimization strategy and residual technique provides a promising detector design,which has been found to be more effective during actual object detection,in terms of decreased average detection time by 68.25%and 60.60%,and increased average Intersection over Union(Io U)by 20.74%and6.79%compared to YOLOv3 and YOLOv4 through experiments.The comprehensive functional tests of RCRo system demonstrate the feasibility and competency of the multiple unmanned inspections in practice.