期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Influence of ignition condition on the growth of silicon thin films using plasma enhanced chemical vapour deposition
1
作者 Zhang Hai-Long Liu Feng-Zhen +1 位作者 Zhu Mei-Fang Liu Jin-Long 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第1期314-319,共6页
The influences of the plasma ignition condition in plasma enhanced chemical vapour deposition (PECVD) on the interfaces and the microstructures of hydrogenated microcrystalline Si (μc-Si:H) thin films are invest... The influences of the plasma ignition condition in plasma enhanced chemical vapour deposition (PECVD) on the interfaces and the microstructures of hydrogenated microcrystalline Si (μc-Si:H) thin films are investigated. The plasma ignition condition is modified by varying the ratio of Sill4 to H2 (RH). For plasma ignited with a constant gas ratio, the time-resolved optical emission spectroscopy presents a low value of the emission intensity ratio of Ha to Sill* (Iuα//SiH*) at the initial stage, which leads to a thick amorphous incubation layer. For the ignition condition with a profiling RH, the higher IHα/ISiH* values are realized. By optimizing the RN modulation, a uniform crystallinity along the growth direction and a denser αc-Si:H film can be obtained. However, an excessively high IRα/ISIH* may damage the interface properties, which is indicated by capacitance-voltage (C-V) measurements. Well controlling the ignition condition is critically important for the applications of Si thin films. 展开更多
关键词 plasma enhanced chemical vapour deposition microcrystalline silicon ignition condition
下载PDF
Non-equilibrium between ions and electrons inside hot spots from National Ignition Facility experiments 被引量:7
2
作者 Zhengfeng Fan Yuanyuan Liu +3 位作者 Bin Liu Chengxin Yu Ke Lan Jie Liu 《Matter and Radiation at Extremes》 SCIE EI CAS 2017年第1期3-8,共6页
The non-equilibrium between ions and electrons in the hot spot can relax the ignition conditions in inertial confinement fusion[Fan et al.,Phys.Plasmas 23,010703(2016)],and obvious ion-electron non-equilibrium could b... The non-equilibrium between ions and electrons in the hot spot can relax the ignition conditions in inertial confinement fusion[Fan et al.,Phys.Plasmas 23,010703(2016)],and obvious ion-electron non-equilibrium could be observed by our simulations of high-foot implosions when the ion-electron relaxation is enlarged by a factor of 2.On the other hand,in many shots of high-foot implosions on the National Ignition Facility,the observed X-ray enhancement factors due to ablator mixing into the hot spot are less than unity assuming electrons and ions have the same temperature[Meezan et al.,Phys.Plasmas 22,062703(2015)],which is not self-consistent because it can lead to negative ablator mixing into the hot spot.Actually,this non-consistency implies ion-electron non-equilibrium within the hot spot.From our study,we can infer that ion-electron non-equilibrium exists in high-foot implosions and the ion temperature could be~9%larger than the equilibrium temperature in some NIF shots. 展开更多
关键词 Ion-electron non-equilibrium Hot-spot ignition conditions relaxation High-foot experiments
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部